Featured Research

from universities, journals, and other organizations

Gene migration helps predict movement of disease

Date:
July 18, 2011
Source:
Institute of Physics
Summary:
Until recently, migration patterns, such as those adopted by birds all across the Amazonian rainforest, have not been thought to play an important role in the spreading of beneficial genes through a population.

Until recently, migration patterns, such as those adopted by birds all across the Amazonian rainforest, have not been thought to play an important role in the spreading of beneficial genes through a population.

Researchers have now, for the first time, been able to predict the chance of a gene spreading when given any migration pattern, potentially providing an insight into the migration patterns of animals throughout history.

Even more impressively, the concepts from these predictions can be applied to tracking the route of cancer through the body, and viruses or bacteria through a population.

The study, published July 14, 2011, in the Institute of Physics and German Physical Society's New Journal of Physics, has provided a computation to make these predictions, performed within seconds on a normal computer.

"Give me your migration pattern, I'll give you the chances of success of your mutant," said lead author Professor Bharum Houchmandzadeh, of CNRS and Laboratoire Interdisciplinaire de Physique.

A mutant is a gene that has been altered naturally so that its normal function, or expression of a trait, is affected. The large majority of mutations have damaging effects; however, some can be beneficial ― the mutation may be able to help the organism withstand environmental stress or help it reproduce more quickly.

As a result, beneficial mutations tend to become more common throughout a population.

Since the discovery that evolution is a chance game more than seventy years ago, evolutionary theorists have been calculating the chances of beneficial mutations making their way through a population, with little or no attention being paid to the effect that migrations might have on these chances.

One of the reasons for this disregard is the fact that migration patterns are very hard to evaluate due to their sometimes complex nature. Take, for instance, a species of plant situated along a river: the upstream plants can send their seeds down the river, but the reverse is impossible.

Previous research has found that there are two dominant types of migration pattern and the researchers have taken things one step further by applying a neat set of mathematical tools to represent those patterns.

The first migration pattern assumes that when you die, someone else's progeny will replace you. For example, a tree has to die to free up the space for another to grow in its place. For this type of behaviour, the researchers showed that migrations decrease the chance of a mutation spreading and that there is an upper limit to the chance of success.

The second migration pattern assumes that your progeny will kill someone and replace them; much like viruses, bacteria and cancer. For this type of behaviour, some migration patterns can greatly enhance the chance of a mutant's success and can even make it certain.

These calculations allow one to detect all the migration patterns when given the chance of success of a certain mutant.

Professor Houchmandzadeh continues, "Suppose we are speaking of the spread of epidemics. A virus can jump from one individual to another during a single encounter. The migration pattern in this case is then the network of people meeting each other.

"An epidemiologist could use our formulas to compute the best way to limit encounters between individuals and therefore slow the spread of epidemics."


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bahram Houchmandzadeh1 and Marcel Vallade. The fixation probability of a beneficial mutation in a geographically structured population. New Journal of Physics Volume, 13 July 2011 DOI: 10.1088/1367-2630/13/7/073020

Cite This Page:

Institute of Physics. "Gene migration helps predict movement of disease." ScienceDaily. ScienceDaily, 18 July 2011. <www.sciencedaily.com/releases/2011/07/110713211939.htm>.
Institute of Physics. (2011, July 18). Gene migration helps predict movement of disease. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/07/110713211939.htm
Institute of Physics. "Gene migration helps predict movement of disease." ScienceDaily. www.sciencedaily.com/releases/2011/07/110713211939.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) — How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) — The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) — Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Family Pleads for Pet Pig to Stay at Home

Family Pleads for Pet Pig to Stay at Home

AP (Oct. 22, 2014) — The Johnson family lost their battle with the Chesterfield County, Virginia Planning Commission to allow Tucker, their pet pig, to stay in their home, but refuse to let the board keep Tucker away. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins