Featured Research

from universities, journals, and other organizations

Gene migration helps predict movement of disease

Date:
July 18, 2011
Source:
Institute of Physics
Summary:
Until recently, migration patterns, such as those adopted by birds all across the Amazonian rainforest, have not been thought to play an important role in the spreading of beneficial genes through a population.

Until recently, migration patterns, such as those adopted by birds all across the Amazonian rainforest, have not been thought to play an important role in the spreading of beneficial genes through a population.

Researchers have now, for the first time, been able to predict the chance of a gene spreading when given any migration pattern, potentially providing an insight into the migration patterns of animals throughout history.

Even more impressively, the concepts from these predictions can be applied to tracking the route of cancer through the body, and viruses or bacteria through a population.

The study, published July 14, 2011, in the Institute of Physics and German Physical Society's New Journal of Physics, has provided a computation to make these predictions, performed within seconds on a normal computer.

"Give me your migration pattern, I'll give you the chances of success of your mutant," said lead author Professor Bharum Houchmandzadeh, of CNRS and Laboratoire Interdisciplinaire de Physique.

A mutant is a gene that has been altered naturally so that its normal function, or expression of a trait, is affected. The large majority of mutations have damaging effects; however, some can be beneficial ― the mutation may be able to help the organism withstand environmental stress or help it reproduce more quickly.

As a result, beneficial mutations tend to become more common throughout a population.

Since the discovery that evolution is a chance game more than seventy years ago, evolutionary theorists have been calculating the chances of beneficial mutations making their way through a population, with little or no attention being paid to the effect that migrations might have on these chances.

One of the reasons for this disregard is the fact that migration patterns are very hard to evaluate due to their sometimes complex nature. Take, for instance, a species of plant situated along a river: the upstream plants can send their seeds down the river, but the reverse is impossible.

Previous research has found that there are two dominant types of migration pattern and the researchers have taken things one step further by applying a neat set of mathematical tools to represent those patterns.

The first migration pattern assumes that when you die, someone else's progeny will replace you. For example, a tree has to die to free up the space for another to grow in its place. For this type of behaviour, the researchers showed that migrations decrease the chance of a mutation spreading and that there is an upper limit to the chance of success.

The second migration pattern assumes that your progeny will kill someone and replace them; much like viruses, bacteria and cancer. For this type of behaviour, some migration patterns can greatly enhance the chance of a mutant's success and can even make it certain.

These calculations allow one to detect all the migration patterns when given the chance of success of a certain mutant.

Professor Houchmandzadeh continues, "Suppose we are speaking of the spread of epidemics. A virus can jump from one individual to another during a single encounter. The migration pattern in this case is then the network of people meeting each other.

"An epidemiologist could use our formulas to compute the best way to limit encounters between individuals and therefore slow the spread of epidemics."


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bahram Houchmandzadeh1 and Marcel Vallade. The fixation probability of a beneficial mutation in a geographically structured population. New Journal of Physics Volume, 13 July 2011 DOI: 10.1088/1367-2630/13/7/073020

Cite This Page:

Institute of Physics. "Gene migration helps predict movement of disease." ScienceDaily. ScienceDaily, 18 July 2011. <www.sciencedaily.com/releases/2011/07/110713211939.htm>.
Institute of Physics. (2011, July 18). Gene migration helps predict movement of disease. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2011/07/110713211939.htm
Institute of Physics. "Gene migration helps predict movement of disease." ScienceDaily. www.sciencedaily.com/releases/2011/07/110713211939.htm (accessed August 29, 2014).

Share This




More Plants & Animals News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) — Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Fake Dogs Scare Real Geese from Wis. Park

Fake Dogs Scare Real Geese from Wis. Park

AP (Aug. 28, 2014) — Parks officials in Stevens Point, Wisconsin had a fowl problem. Canadian Geese were making a mess of a park, so officials enlisted cardboard versions of man's best friend. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins