Featured Research

from universities, journals, and other organizations

With secondhand gene, house mice resist poison

Date:
July 21, 2011
Source:
Cell Press
Summary:
Since the 1950s, people have tried to limit the numbers of mice and rats using a poison known as warfarin. But, over the course of evolution, those pesky rodents have found a way to make a comeback, resisting that chemical via changes to a gene involved in vitamin K recycling and blood clotting. Now, researchers show that European mice have in some cases acquired that resistance gene in a rather unorthodox way: they got it secondhand from an Algerian mouse.

Since the 1950s, people have tried to limit the numbers of mice and rats using a poison known as warfarin. But, over the course of evolution, those pesky rodents have found a way to make a comeback, resisting that chemical via changes to a gene involved in vitamin K recycling and blood clotting. Now, researchers reporting online on July 21 in Current Biology, a Cell Press publication, show that European mice have in some cases acquired that resistance gene in a rather unorthodox way: they got it secondhand from an Algerian mouse.

Related Articles


"House mice not only have become resistant to rat poisons in the 'usual' way, but also in a very 'unusual' way, through interbreeding with a separate mouse species that is removed by 1.5 to 3 million years," said Michael Kohn of Rice University. "Our work is perhaps the first to catch this unusual process in the act."

The findings show that, as in microbes, there is more than one way for new traits to evolve in animals: via new mutations arising within a species, and via the transfer of genes between species, the researchers say. They also help to explain how rodents have foiled some of our best attempts to kill them so rapidly, and with such apparent ease.

The researchers made their discovery by tracing the evolution of vitamin K epoxide reductase enzyme complex (VKOR), and specifically the subcomponent of that enzyme responsible for warfarin sensitivity or resistance, in the genomes of house mice (Mus musculus domesticus) and Algerian mice (M. spretus). They also showed in laboratory experiments that the gene variant derived from Algerian mice does indeed lend house mice resistance to warfarin.

Kohn's team suspects that M. spretus is naturally resistant to warfarin because they inhabit arid steppe-like terrain and live mostly on dry plant matter and seeds, all poor sources for vitamin K. Once the M. spretus gene variant was introduced into house mice via hybridization between the two species, they too were "pre-adapted" for warfarin resistance.

Kohn said he belongs to the camp that thinks such breaches between species barriers shouldn't happen all that often. But, on an evolutionary time scale, even rare events can change the course of evolution in significant ways.

In this case, it's clear that humans had a heavy influence: we not only introduced a poison that temporarily increased the fitness of mouse hybrids over their parents to allow the eventual transfer of a warfarin resistance gene from one species to another, but we also brought the mice together in the first place with the spread of agriculture from the Fertile Crescent, Kohn said.

"Nature will respond to challenges in the most creative ways, even if challenges are human-made and presumably foolproof," Kohn said. On the other hand, he added, evolution might be more predictable in some ways than we had imagined. After all, the very same gene and gene pathway has evolved multiple times to confer resistance to warfarin in both mice and rats. "Understanding such constraints and the mechanisms by which evolution proceeds will be critical for our continued ability to stay one step ahead of evolved resistances in the animals, plants, and microbes that we wish to control," he said.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ying Song, Stefan Endepols, Nicole Klemann, Dania Richter, Franz-Rainer Matuschka, Ching-Hua Shih, Michael W. Nachman, Michael H. Kohn. Adaptive Introgression of Anticoagulant Rodent Poison Resistance by Hybridization between Old World Mice. Current Biology, 2011; DOI: 10.1016/j.cub.2011.06.043

Cite This Page:

Cell Press. "With secondhand gene, house mice resist poison." ScienceDaily. ScienceDaily, 21 July 2011. <www.sciencedaily.com/releases/2011/07/110721121547.htm>.
Cell Press. (2011, July 21). With secondhand gene, house mice resist poison. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2011/07/110721121547.htm
Cell Press. "With secondhand gene, house mice resist poison." ScienceDaily. www.sciencedaily.com/releases/2011/07/110721121547.htm (accessed October 30, 2014).

Share This



More Plants & Animals News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


'Freaky Mouse' Defeats Common Poison: House Mice Found Unexpected Ways to Evolve Resistance, Study Shows

July 21, 2011 Researchers have discovered common house mice found two distinct ways to evolve resistance to warfarin-based rodent ... read more

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins