Featured Research

from universities, journals, and other organizations

Closer look at cells: Fluorescence microscopy lets scientists observe exchanges across cell membranes

Date:
July 28, 2011
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Many substances and nutrients are exchanged across the cell membrane. Scientists in Switzerland have developed a method to observe these exchanges, by taking a highly accurate count of the number of proteins found there.

Many substances and nutrients are exchanged across the cell membrane. Scientists at Ecole Polytechnique Fédérale de Lausanne in Switzerland have developed a method to observe these exchanges, by taking a highly accurate count of the number of proteins found there.

Their research has just been published in the online journal PLoS ONE.

Proteins on the cell surface play an essential role in the survival of the cell. They govern the exchanges between the interior and the exterior. Now, EPFL scientists have found a way to observe them in action. They have developed a method based on fluorescence microscopy that gives them a very precise image of the composition of the membrane and the exchanges taking place there. Their results are published July 26 in an article in Plos One, an online journal specializing in science and medicine, as well as in a June 12, 2011 letter to the journal Nature Methods.

"It is important to study the membrane because it is an exchange platform between the cell and its environment," explains Aleksandra Radenovic, Professor in the Laboratory of Nanoscale Biology and one of the study's authors.

Permeable to some molecules but closed off to others, the membrane controls the movement of substances and nutrients between the interior and the exterior of the cell. The proteins in the membrane play critical roles in the cell, particularly in energy transfer, gene expression and nutrient transport.

Using the method they developed, the scientists can now count these proteins very accurately. In so doing, they obtain valuable information on their interactions and their evolution. It allows them to know more about how a cell reacts to the administration of a drug or exposure to an external agent (such as a pollutant), and why a given cell behaves differently from another cell. "Eventually, this technique could thus help us develop more effective drugs," Radenovic says.

Capturing light

This research is based on very high resolution data provided by a special fluorescence microscopy technique called Photo Activated Localization Microscopy (PALM). Developed just under five years ago, this technology has revolutionized molecular imaging. It works on the principle of capturing light that is emitted -- either naturally or upon combination with a fluorescent substance (fluorochrome) -- by certain bodies at the nanometer scale.

Once the biological sample is placed under the microscope, the scientist "illuminates" the molecules with a series of successive flashes. The assemblage of images then forms a very high resolution image, which allows the scientists to pinpoint the location of proteins at extremely small scales.

The Laboratory of Nanoscale Biology is continuing its investigations, in order to refine the use of this technology and the quantification of elements present in the membrane in the most reliable manner possible. In particular, they are working on a "photoactivatable" protein called mEos2.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Journal References:

  1. Paolo Annibale, Stefano Vanni, Marco Scarselli, Ursula Rothlisberger, Aleksandra Radenovic. Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking. PLoS ONE, 2011; 6 (7): e22678 DOI: 10.1371/journal.pone.0022678
  2. Paolo Annibale, Stefano Vanni, Marco Scarselli, Ursula Rothlisberger, Aleksandra Radenovic. Identification of clustering artifacts in photoactivated localization microscopy. Nature Methods, 2011; 8 (7): 527 DOI: 10.1038/nmeth.1627

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Closer look at cells: Fluorescence microscopy lets scientists observe exchanges across cell membranes." ScienceDaily. ScienceDaily, 28 July 2011. <www.sciencedaily.com/releases/2011/07/110727121701.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2011, July 28). Closer look at cells: Fluorescence microscopy lets scientists observe exchanges across cell membranes. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2011/07/110727121701.htm
Ecole Polytechnique Fédérale de Lausanne. "Closer look at cells: Fluorescence microscopy lets scientists observe exchanges across cell membranes." ScienceDaily. www.sciencedaily.com/releases/2011/07/110727121701.htm (accessed April 24, 2014).

Share This



More Plants & Animals News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) — A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) — Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) — A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) — A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins