Featured Research

from universities, journals, and other organizations

Scientists copy the ways viruses deliver genes

Date:
August 12, 2011
Source:
National Physical Laboratory
Summary:
Scientists have mimicked the ways viruses infect human cells and deliver their genetic material. The research hopes to apply the approach to gene therapy -- a therapeutic strategy to correct defective genes such as those that cause cancer.

Scientists at the National Physical Laboratory (NPL) have mimicked the ways viruses infect human cells and deliver their genetic material. The research hopes to apply the approach to gene therapy -- a therapeutic strategy to correct defective genes such as those that cause cancer.

Related Articles


Gene therapy is still in its infancy, with obvious challenges around targeting damaged cells and creating corrective genes. An equally important challenge, addressed by this research, is finding ways to transport the corrective genes into the cell. This is a problem, because of the poor permeability of cell membranes.

This research describes a model peptide sequence, dubbed GeT (gene transporter), which wraps around genes, transports them through cell membranes and helps their escape from intracellular degradation traps. The process mimics the mechanisms viruses use to infect human cells.

GeT was designed to undergo differential membrane-induced folding -- a process whereby the peptide changes its structure in response to only one type of membranes. This enables the peptide, and viruses, to carry genes into the cell. Interestingly, the property also makes it antibacterial and so capable of gene transfer even in bacteria-challenged environments.

To prove the concept, the researchers used GeT to transfer a synthetic gene encoding for a green fluorescent protein -- a protein whose fluorescence in cells can be seen and monitored using fluorescence microscopy.

The design can serve as a potential template for non-viral delivery systems and specialist treatments of genetic disorders.

This research, performed at NPL, is a part of the NPL-led international research project 'Multiscale measurements in biophysical systems', which is jointly funded by NPL and the Scottish Universities Physics Alliance.

The team's article GeT peptides: a single domain approach to gene delivery, detailing this research has just been published in Chem. Commun -- the flagship journal of the Royal Society of Chemistry.


Story Source:

The above story is based on materials provided by National Physical Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Baptiste Lamarre, Jascindra Ravi, Maxim G. Ryadnov. GeT peptides: a single-domain approach to gene delivery. Chemical Communications, 2011; 47 (32): 9045 DOI: 10.1039/C1CC13043A

Cite This Page:

National Physical Laboratory. "Scientists copy the ways viruses deliver genes." ScienceDaily. ScienceDaily, 12 August 2011. <www.sciencedaily.com/releases/2011/08/110811094836.htm>.
National Physical Laboratory. (2011, August 12). Scientists copy the ways viruses deliver genes. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2011/08/110811094836.htm
National Physical Laboratory. "Scientists copy the ways viruses deliver genes." ScienceDaily. www.sciencedaily.com/releases/2011/08/110811094836.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins