Featured Research

from universities, journals, and other organizations

Unzipping DNA mysteries: Physicists discover how a vital enzyme works

Date:
September 19, 2011
Source:
Cornell University
Summary:
With an eye toward understanding DNA replication, researchers have learned how a helicase enzyme works to actually unzip the two strands of DNA.

With an eye toward understanding DNA replication, Cornell researchers have learned how a helicase enzyme works to actually unzip the two strands of DNA.

The results are published in the journal Nature.

At the heart of many metabolic processes, including DNA replication, are enzymes called helicases. Acting like motors, these proteins travel along one side of double-stranded DNA, prompting the strands to "zip" apart.

What had been a mystery was the exact mechanics of this vital biological process -- how individual helicase subunits coordinate and physically cause the unzipping mechanism.

Cornell researchers led by Michelle Wang, professor of physics and an investigator of the Howard Hughes Medical Institute (HHMI), have observed these processes by manipulating single DNA molecules to watch what happens when helicases encounter them, and how different nucleotides that fuel the reactions affect the process. For their experiments they used an E. coli T7 phage helicase, a type with six distinct subunits, which is a good representation of how many helicases work.

"This is a great demonstration of the power of single-molecule studies," said Wang, whose lab specializes in a technique called optical trapping. To record data from single molecules, the scientists use a focused beam of light to "trap" microspheres attached to the molecules.

Prior to this work, researchers from other labs had found that the nucleotide dTTP (deoxythymidine triphosphate) was a "preferred" fuel for the helicase, and that the helicase apparently wouldn't unzip DNA if ATP (adenosine triphosphate) was provided as fuel. Wang and her colleagues found this puzzling, because ATP is known to be the primary fuel molecule in living organisms.

In their latest work, they discovered that, in fact, ATP does cause unwinding, but only in the single-molecule study could they confirm this. In normal biochemical studies, ATP doesn't seem to work, because it causes helicase to "slip" backward on the DNA, then move forward, then slip again.

In bulk studies, rather than single-molecule kinetic observations, the ATP doesn't produce a signal from unwound DNA because the slippage masks the signal.

They then surmised that different mixtures of nucleotides might allow them to investigate helicase subunit coordination. They found that very small amounts of dTTP mixed with large amounts of ATP were enough to decrease the "slippage" events they saw with the ATP alone.

Further inspection revealed that while two subunits of the T7 helicase are binding and releasing nucleotides, the other four can remain bound to nucleotides to anchor the DNA and prevent it from slipping. It only takes one subunit bound to dTTP to decrease slippage almost entirely -- a little goes a long way.

Such studies can help scientists gain a deeper understanding of helicase mechanics and, in the case of medicine, what happens when helicases go awry or don't bind correctly.

Smita Patel, Rutgers University biochemistry professor and paper co-author, says helicase defects are associated with cancer predisposition, premature aging and many other genetics-related conditions.

"This study provides fundamental new knowledge about a cellular process that is essential to all forms of life," said Catherine Lewis, who oversees single-molecule biophysics grants at the National Institute of General Medical Sciences of the National Institutes of Health. "By using single-molecule methods to study how helicases work, Dr. Wang has resolved several longstanding questions about how the enzyme is coordinated, and possibly regulated, during replication."

Along with contributions from researchers at other institutions, the paper's two lead authors are Bo Sun, an HHMI and Cornell postdoctoral associate in physics, and Daniel S. Johnson, a former graduate student.

The Nature paper was funded by the National Institutes of Health, the National Science Foundation and the Cornell Molecular Biophysics Training Grant.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bo Sun, Daniel S. Johnson, Gayatri Patel, Benjamin Y. Smith, Manjula Pandey, Smita S. Patel, Michelle D. Wang. ATP-induced helicase slippage reveals highly coordinated subunits. Nature, 2011; DOI: 10.1038/nature10409

Cite This Page:

Cornell University. "Unzipping DNA mysteries: Physicists discover how a vital enzyme works." ScienceDaily. ScienceDaily, 19 September 2011. <www.sciencedaily.com/releases/2011/09/110918144952.htm>.
Cornell University. (2011, September 19). Unzipping DNA mysteries: Physicists discover how a vital enzyme works. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/09/110918144952.htm
Cornell University. "Unzipping DNA mysteries: Physicists discover how a vital enzyme works." ScienceDaily. www.sciencedaily.com/releases/2011/09/110918144952.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins