Featured Research

from universities, journals, and other organizations

Fluid equilibrium in prehistoric organisms sheds light on a turning point in evolution

Date:
September 24, 2011
Source:
American Physiological Society
Summary:
Maintaining fluid balance in the body is essential to survival. By researching recent genomic data, researchers have found genetic evidence that links this intricate process to a turning point in evolution.

Maintaining fluid balance in the body is essential to survival, from the tiniest protozoa to the mightiest of mammals. By researching recent genomic data, Swiss researchers have found genetic evidence that links this intricate process to a turning point in evolution.

Related Articles


The study was led by Bernard Rossier, Professor Emeritus, University of Lausanne, along with colleagues Romain A. Studer, Emilie Person, and Marc Robinson-Rechavi. Dr. Rossier will discuss the team's findings at the 7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels, sponsored by the American Physiological Society. Dr. Rossier's presentation, "Evolution of ENaC and Na-K-ATPase as Limiting Factors of Aldosterone Action," is based in part on the team's recent article published in the journal Physiological Genomics.

Timing Is Everything

In humans, the hormone aldosterone affects fluid balance by controlling the epithelial sodium channel (ENaC), a protein that traverses a cell's membrane and facilitates the movement of salt into and out of the cell. By searching for genes that descended from a common ancestral DNA sequence (homologs), the researchers found that the emergence of ENaC and Na, K-ATPase (sodium pump), an enzyme that also plays a role in sodium transport, coincided with the emergence of multi-celled organisms.

Dr. Rossier and his team focused their analysis on eukaryotes -- organisms whose cells contain complex structures within enclosed membranes -- and sought to determine when and where on the eukaryotic family tree ENaC first appeared. When tracing the alpha, beta, and gamma subunits of ENaC back, the team found that the beta subunit appeared slightly before the emergence of Metazoans (multicellular animals with differentiated tissues) roughly 750 million years ago.

"The alpha subunit is an old protein found everywhere, in any kind of organism, but the beta and gamma subunits appear much later in evolution," said Dr. Rossier. "The appearance of the beta subunit is particularly significant because it is required for the function of the sodium pump. Without it, a functional sodium pump cannot be expressed at the cell surface. What is interesting is that it appeared right before the dividing point between unicellular organisms and multicellular organisms."

The team also found homologs of ENaC in a single-celled organism, the Naegleria gruberi. Although N. gruberi is a eukaryote and shares a common ancestor with Metazoans, it is located on a different branch of the eukaryotic family tree, among the Excavates. At first glance it might make sense to assume that both Metazoans and Excavates got their ENaC from their common eukaryotic ancestor, but ENaC is absent in all other branches of the eukaryotic tree.

Dr. Rossier said that although it is possible that the genes for ENaC originated in the common ancestor of eukaryotes and were lost in all branches except the Metazoa and the Excavates, there is another possibility. There could have been a lateral transfer of genes between N. gruberi and a Metazoan ancestor, one that lived between the last common ancestor of all eukaryotes and the first Metazoans.

Whether a Metazoan transferred the genes for ENaC to N. gruberi or the other way around, Dr. Rossier is not sure. Either way, the fact that ENaC gene family appeared just before the emergence of Metazoans suggests it is somehow linked to the development of multi-celled organisms, he said.


Story Source:

The above story is based on materials provided by American Physiological Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. A. Studer, E. Person, M. Robinson-Rechavi, B. C. Rossier. Evolution of the epithelial sodium channel and the sodium pump as limiting factors of aldosterone action on sodium transport. Physiological Genomics, 2011; 43 (13): 844 DOI: 10.1152/physiolgenomics.00002.2011

Cite This Page:

American Physiological Society. "Fluid equilibrium in prehistoric organisms sheds light on a turning point in evolution." ScienceDaily. ScienceDaily, 24 September 2011. <www.sciencedaily.com/releases/2011/09/110922134531.htm>.
American Physiological Society. (2011, September 24). Fluid equilibrium in prehistoric organisms sheds light on a turning point in evolution. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/09/110922134531.htm
American Physiological Society. "Fluid equilibrium in prehistoric organisms sheds light on a turning point in evolution." ScienceDaily. www.sciencedaily.com/releases/2011/09/110922134531.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Domestication Might've Been Bad For Horses

Domestication Might've Been Bad For Horses

Newsy (Dec. 16, 2014) A group of scientists looked at the genetics behind the domestication of the horse and showed how human manipulation changed horses' DNA. Video provided by Newsy
Powered by NewsLook.com
Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

AFP (Dec. 16, 2014) A collection of rare manuscripts by composers Mozart, Beethoven, Shubert and Bizet are due to go on sale at auction on December 17. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Old Ship Records to Shed Light on Arctic Ice Loss

Old Ship Records to Shed Light on Arctic Ice Loss

Reuters - Innovations Video Online (Dec. 15, 2014) Researchers are looking to the past to gain a clearer picture of what the future holds for ice in the Arctic. A project to analyse and digitize ship logs dating back to the 1850's aims to lengthen the timeline of recorded ice data. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins