Featured Research

from universities, journals, and other organizations

High-performance simulation, neutrons uncover three classes of protein motion

Date:
October 2, 2011
Source:
DOE/Oak Ridge National Laboratory
Summary:
Molecular motion in proteins comes in three distinct classes, according to researchers. The research team combined high-performance computer simulation with neutron scattering experiments to understand atomic-level motions that underpin the operations of proteins.

Lysozyme (shown in blue) -- a natural enzyme found in tears, saliva and egg whites -- can break down bacterial cell walls (shown in pink). ORNL researchers have combined computational simulation and neutron experiments to clarify the complicated motions of proteins such as lysozyme into three distinct classes.
Credit: ORNL

Molecular motion in proteins comes in three distinct classes, according to a collaboration by researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee, in research reported in Physical Review Letters.

The research team, directed by ORNL-UT Governor's Chairs Jeremy Smith and Alexei Sokolov, combined high-performance computer simulation with neutron scattering experiments to understand atomic-level motions that underpin the operations of proteins.

"The analysis and interpretation of neutron scattering spectra are always difficult for complex molecules such as proteins," said Smith, who directs ORNL's Center for Molecular Biophysics. "We've performed experiments and then shown that simulation can provide a clear view of them. It allows us to see through the complexity and find out what motions are going on."

Defining the motions present -- localized diffusion, methyl group rotations and jumps -- is important as it allows scientists to think about how the motions determine the functions of proteins that are critical to all life.

"First, we found that experiment and simulation agreed perfectly with each other, which is remarkable," Smith said. "Second, the simulations told us that this type of neutron scattering can be interpreted in a very simple way."

Although the team performed its research on a particular protein called lysozyme, a natural antibacterial enzyme found in tears, saliva and egg whites, the researchers anticipate the technique will have a much broader impact in the neutron scattering community, aiding research in areas such as biofuel design or environmental remediation.

The combined simulation and neutron scattering approach should also be of use in the characterization of non-biological materials such as polymers. Smith notes that approximately half the neutron scattering experiments at ORNL's Spallation Neutron Source involve the study of motions in materials.

"These methods are of general applicability," Smith said. "Many experimentalists can now come to the ORNL's Spallation Neutron Source, measure a spectrum of whatever sample they have, and then apply this analysis in terms of three classes of motion to interpret their results."

The research was primarily conducted by ORNL's Liang Hong, with the support of Benjamin Lindner and Nikolai Smolin from ORNL. They performed neutron scattering experiments at ORNL's Spallation Neutron Source on the BASIS instrument and at the National Institute of Standards and Technology Center for Neutron Research.

The simulation component of the work was supported by ORNL's Laboratory Directed Research and Development program, while the neutron scattering component was supported by an Experimental Program to Stimulate Competitive Research (EPSCOR) grant to the University of Tennessee from the DOE Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Liang Hong, Nikolai Smolin, Benjamin Lindner, Alexei P. Sokolov, Jeremy C. Smith. Three classes of motion in the dynamic neutron-scattering susceptibility of a globular protein. Physical Review Letters, 2011; (accepted)

Cite This Page:

DOE/Oak Ridge National Laboratory. "High-performance simulation, neutrons uncover three classes of protein motion." ScienceDaily. ScienceDaily, 2 October 2011. <www.sciencedaily.com/releases/2011/09/110930093530.htm>.
DOE/Oak Ridge National Laboratory. (2011, October 2). High-performance simulation, neutrons uncover three classes of protein motion. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/09/110930093530.htm
DOE/Oak Ridge National Laboratory. "High-performance simulation, neutrons uncover three classes of protein motion." ScienceDaily. www.sciencedaily.com/releases/2011/09/110930093530.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins