Featured Research

from universities, journals, and other organizations

Chemistry: New insight into 100-year-old Haber-Bbosch process of converting nitrogen to ammonia

Date:
November 13, 2011
Source:
University of Rochester
Summary:
New research has resulted in a greater understanding of how the Haber-Bosch process converts nitrogen to ammonia.

For the past 100 years, the Haber-Bosch process has been used to convert atmospheric nitrogen into ammonia, which is essential in the manufacture of fertilizer. Despite the longstanding reliability of the process, scientists have had little understanding of how it actually works. But now a team of chemists, led by Patrick Holland of the University of Rochester, has new insight into how the ammonia is formed. Their findings are published in the latest issue of Science.

Holland calls nitrogen molecules "challenging." While they're abundant in the air around us, which makes them desirable for research and manufacturing, their strong triple bonds are difficult to break, making them highly unreactive. For the last century, the Haber-Bosch process has made use of an iron catalyst at extremely high pressures and high temperatures to break those bonds and produce ammonia, one drop at a time. The question of how this works, though, has not been answered to this day.

"The Haber-Bosch process is efficient, but it is hard to understand because the reaction occurs only on a solid catalyst, which is difficult to study directly," said Holland. "That's why we attempted to break the nitrogen using soluble forms of iron."

Holland and his team, which included Meghan Rodriguez and William Brennessel at the University of Rochester and Eckhard Bill of the Max Planck Institute for Bioinorganic Chemistry in Germany, succeeded in mimicking the process in solution. They discovered that an iron complex combined with potassium was capable of breaking the strong bonds between the nitrogen (N) atoms and forming a complex with an Fe3N2 core, which indicates that three iron (Fe) atoms work together in order to break the N-N bonds. The new complex then reacts with hydrogen (H2) and acid to form ammonia (NH3) -- something that had never been done by iron in solution before.

Despite the breakthrough, the Haber-Bosch process is not likely to be replaced anytime soon. While there are risks in producing ammonia at extremely high temperatures and pressures, Holland points out that the catalyst used in Haber-Bosch is considerably less expensive than what was used by his team. But Holland says it is possible that his team's research could eventually help in coming up with a better catalyst for the Haber-Bosch process -- one that would allow ammonia to be produced at lower temperatures and pressures.

At the same time, the findings could have a benefit far removed from the world of ammonia and fertilizer. When the iron-potassium complex breaks apart the nitrogen molecules, negatively charged nitrogen ions -- called nitrides -- are formed. Holland says the nitrides formed in solution could be useful in making pharmaceuticals and other products.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. M. Rodriguez, E. Bill, W. W. Brennessel, P. L. Holland. N2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex. Science, 2011; 334 (6057): 780 DOI: 10.1126/science.1211906

Cite This Page:

University of Rochester. "Chemistry: New insight into 100-year-old Haber-Bbosch process of converting nitrogen to ammonia." ScienceDaily. ScienceDaily, 13 November 2011. <www.sciencedaily.com/releases/2011/11/111111152240.htm>.
University of Rochester. (2011, November 13). Chemistry: New insight into 100-year-old Haber-Bbosch process of converting nitrogen to ammonia. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2011/11/111111152240.htm
University of Rochester. "Chemistry: New insight into 100-year-old Haber-Bbosch process of converting nitrogen to ammonia." ScienceDaily. www.sciencedaily.com/releases/2011/11/111111152240.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins