Featured Research

from universities, journals, and other organizations

Lipid-modifying enzyme: New target for pan-viral therapeutics

Date:
December 10, 2011
Source:
American Society for Cell Biology
Summary:
Three different disease-causing viruses -- poliovirus, coxsackievirus, and hepatitis C -- rely on their unwilling host for the membrane platforms enriched in a specific lipid, phosphatidylinositol 4 phosphate (PI4P) on which they can replicate, researchers report.

Three different disease-causing viruses -- poliovirus, coxsackievirus, and hepatitis C -- rely on their unwilling host for the membrane platforms enriched in a specific lipid, phosphatidylinositol 4 phosphate (PI4P) on which they can replicate, Rutgers University researchers said on Dec. 7, at the American Society for Cell Biology annual meeting in Denver.

The viruses carry proteins that enable them to gain access to the P14P lipid for replication. The proteins snare one of the host's own lipid-modifying enzymes, a Type III PI4-kinase (PI4-kinase), reported Nihal Altan-Bonnet, Ph.D., of Rutgers University.

The PI4-kinase may prove to be an excellent target for panviral therapeutics, Altan-Bonnet said. When the Rutgers researchers blocked this PI4-kinase, the invading viruses all ceased replicating, and their host cells survived.

The Rutgers group has extended its investigations to identify other viruses that might be vulnerable to this countermeasure.

Blocking the PI4-kinase was effective, Altan-Bonnet explained, because invading viruses require this enzyme to manufacture the P14P lipid for the platforms that they must set up on the host's membrane-bound organelles, which include the Golgi apparatus and the mitochondria.

The viruses can replicate only on cell membrane platforms enriched with the P14P lipid. To gain access to the lipid, the viruses employ a protein that hijacks the cell's P14-kinase.

They then use it to generate the lipid that enriches the platform. Once established, the viruses rapidly make copies of themselves that go on to infect other cells in the organism.

In normal, uninfected cells, the level of PI4P lipid on organelle membranes is generally low and increases only when signaling and membrane-remodeling proteins are required by the cell, said Altan-Bonnet.

But in infected cells, levels of PI4P lipid dramatically increase, reflecting the viruses' need for more PI4P lipid-enriched membrane surface to anchor their replication machinery.

Altan-Bonnet's lab also found that these membrane surfaces are enriched with cholesterol as well as PI4P lipid. Normally, cholesterol regulates membrane fluidity and elasticity, generating domains to sequester proteins so they can interact effectively.

Altan-Bonnet said that the PI4P lipid and cholesterol together may generate "sticky" membrane domains that viruses exploit for replication. Since viral proteins are relatively few after they invade the host cell, a "sticky" rallying point could be critical to their survival.

The researchers also discovered that RNA polymerases, which are vital for synthesizing the nucleic acids of viruses, have specific binding sites that lock onto PI4P lipids.


Story Source:

The above story is based on materials provided by American Society for Cell Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Cell Biology. "Lipid-modifying enzyme: New target for pan-viral therapeutics." ScienceDaily. ScienceDaily, 10 December 2011. <www.sciencedaily.com/releases/2011/12/111207105319.htm>.
American Society for Cell Biology. (2011, December 10). Lipid-modifying enzyme: New target for pan-viral therapeutics. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2011/12/111207105319.htm
American Society for Cell Biology. "Lipid-modifying enzyme: New target for pan-viral therapeutics." ScienceDaily. www.sciencedaily.com/releases/2011/12/111207105319.htm (accessed August 30, 2014).

Share This




More Plants & Animals News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins