Featured Research

from universities, journals, and other organizations

Cellular automaton model predicts how hair follicle stem cells regenerate

Date:
December 9, 2011
Source:
American Society for Cell Biology
Summary:
Your hair -- or lack of hair -- is the result of a lifelong tug-of-war between activators that wake up, and inhibitors that calm, stem cells in every hair follicle on your body.

Your hair -- or lack of hair -- is the result of a lifelong tug-of-war between activators that wake up, and inhibitors that calm, stem cells in every hair follicle on your body, according to Cheng-Ming Chuong, M.D., Ph.D., of the University of Southern California (USC).

Related Articles


Chuong presented the findings on Dec. 7, at the American Society for Cell Biology 2011 Annual Meeting in Denver.

Building on research reported last April in Science, Chuong and his colleagues teamed with Oxford University mathematicians Philip Maini, Ph.D., and Ruth E. Baker, Ph.D., to use a "cellular automaton" model to describe the population behavior of hair follicles.

Using the predictive model, the researchers found that each adult human hair follicle could count only on its intrinsic growth-promoting signals, without the help of adjacent follicles in the macro-environment. In contrast, the growth of both rabbit and mice hair follicles depended on signals from neighboring follicles.

The cellular automaton model consists of a regular mathematical grid of automata, each of which represents one hair follicle in one of its four functional cyclic stages. Surrounding each automaton are eight automata, the hair follicle's neighbors.

The state of each automaton changes according to rules that dictate whether hair on a human scalp or in an animal's fur coat will be caught up in waves of growth called the anagen phase, or remain in the resting or telogen phase. Under the right conditions -- winter season or a new physiological stage in an organism's life such as puberty -- a collective regeneration wave can sweep through the skin, activating hair stem cells in individual follicles and those in front of them, by the tens of thousands.

In other seasons or life stages, individual follicles may remain locked in telogen by the inhibitors in their macro-environment. Inhibitor levels are modulated in part by intradermal adipose tissue and the central endocrine system. These multiple layers of control create a balance between inhibitory BMP (bone morphogenic protein) signaling that keeps hair stem cells in quiescent state and activating Wnt signaling that wakes them up.

Chuong reported robust wave spreading in rabbits, gradual spreading in mice, and random growth with loss of follicle coupling in human skin. The data suggest a new approach to androgenic alopecia, the most common form of alopecia in aging males: It may be easier to get hair follicles growing again by improving their environment, rather than implanting stem cells.

The success of the cellular automaton method could be applied to a broad range of biological pattern formation situations, including the spread of infectious diseases or neural networking in the developing brain, said Chuong.

Chuong and his colleagues determined that spacing between hair stem cell clusters was critical. Because rabbits have compound follicles (multiple hairs from one follicle), their stem cells were tightly coupled, and their coats regenerated so rapidly that the patterns resembled rapidly changing fractals. In humans, coupling of hair follicles was much lower, probably as a result of human evolution, Chuong said.


Story Source:

The above story is based on materials provided by American Society for Cell Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Cell Biology. "Cellular automaton model predicts how hair follicle stem cells regenerate." ScienceDaily. ScienceDaily, 9 December 2011. <www.sciencedaily.com/releases/2011/12/111207132635.htm>.
American Society for Cell Biology. (2011, December 9). Cellular automaton model predicts how hair follicle stem cells regenerate. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2011/12/111207132635.htm
American Society for Cell Biology. "Cellular automaton model predicts how hair follicle stem cells regenerate." ScienceDaily. www.sciencedaily.com/releases/2011/12/111207132635.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins