Featured Research

from universities, journals, and other organizations

Upper atmosphere facilitates changes that let mercury enter food chain

Date:
December 18, 2011
Source:
University of Washington
Summary:
New research shows that the upper troposphere and lower stratosphere work to transform elemental mercury into oxidized mercury, which can easily be deposited into aquatic ecosystems and ultimately enter the food chain.

Humans pump thousands of tons of vapor from the metallic element mercury into the atmosphere each year, and it can remain suspended for long periods before being changed into a form that is easily removed from the atmosphere.

New research shows that the upper troposphere and lower stratosphere work to transform elemental mercury into oxidized mercury, which can easily be deposited into aquatic ecosystems and ultimately enter the food chain.

"The upper atmosphere is acting as a chemical reactor to make the mercury more able to be deposited to ecosystems," said Seth Lyman, who did the work as a research assistant professor in science and technology at the University of Washington Bothell.

Lyman, now with Utah State University's Energy Dynamics Laboratory, is lead author of a paper documenting the research published online Dec. 19 by the journal Nature Geoscience. Daniel Jaffe, a science and technology professor at UW Bothell, is coauthor of the paper. The work was supported by a grant from the National Science Foundation.

The findings come from data gathered during research flights in October and November 2010 over North America and Europe by a National Center for Atmospheric Research aircraft.

The campaign used a device built at UW Bothell that can detect both elemental mercury and oxidized mercury in the same air sample, and the device recorded readings every 2.5 minutes. The flights typically are at altitudes of 19,000 to 23,000 feet, well below the confluence of the troposphere and the stratosphere, but several times during the 2010 flights -- particularly on a trip from Bangor, Maine, to Broomfield, Colo. -- the aircraft encountered streams of air that had descended from the stratosphere or from near it.

The result was the first time that the two mercury forms were measured together in a way that showed that elemental mercury is transformed into oxidized mercury, Lyman said, and evidence indicated the process occurs in the upper atmosphere.

Exactly how the oxidation takes place is not known with certainty but, once the transformation takes place, the oxidized mercury is quickly removed from the atmosphere, mostly through precipitation or air moving to the surface. After it settles to the surface, the oxidized mercury is transformed by bacteria into methyl mercury, a form that can be taken into the food chain and eventually can result in mercury-contaminated fish.

Some areas, such as the Southwest United States, appear to have specific climate conditions that allow them to receive more oxidized mercury from the upper atmosphere than other areas, Lyman noted.

He added that where the mercury settles to the surface can be thousands of miles from where it was emitted. For example, mercury from coal burning in Asia could rise into the atmosphere and circle the globe several times before it is oxidized, then could come to the surface anywhere. Understanding where it is oxidized and deposited would help efforts to predict ecosystem impacts of mercury emissions, he said.

"Much of emitted mercury is deposited far from its original sources," Lyman said. "Mercury emitted on the other side of the globe could be deposited right at our back door, depending on where and how it is transported, chemically transformed and deposited."


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Vince Stricherz. Note: Materials may be edited for content and length.


Journal Reference:

  1. Seth N. Lyman, Daniel A. Jaffe. Formation and fate of oxidized mercury in the upper troposphere and lower stratosphere. Nature Geoscience, 2011; DOI: 10.1038/ngeo1353

Cite This Page:

University of Washington. "Upper atmosphere facilitates changes that let mercury enter food chain." ScienceDaily. ScienceDaily, 18 December 2011. <www.sciencedaily.com/releases/2011/12/111218150303.htm>.
University of Washington. (2011, December 18). Upper atmosphere facilitates changes that let mercury enter food chain. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/12/111218150303.htm
University of Washington. "Upper atmosphere facilitates changes that let mercury enter food chain." ScienceDaily. www.sciencedaily.com/releases/2011/12/111218150303.htm (accessed April 17, 2014).

Share This



More Earth & Climate News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins