Featured Research

from universities, journals, and other organizations

Discovery of plant 'nourishing gene' brings hope for increased crop seed yield and food security

Date:
January 13, 2012
Source:
University of Warwick
Summary:
Scientists have discovered a "nourishing gene" which controls the transfer of nutrients from plant to seed -- a significant step which could help increase global food production.

University of Warwick scientists have discovered a "nourishing gene" which controls the transfer of nutrients from plant to seed -- a significant step which could help increase global food production.

The research, led by the University of Warwick in collaboration with the University of Oxford and agricultural biotech research company Biogemma, has identified for the first time a gene, named Meg1, which regulates the optimum amount of nutrients flowing from mother to offspring in maize plants.

Unlike the majority of genes that are expressed from both maternal and paternal chromosomes, Meg1 is expressed only from the maternal chromosomes.

This unusual form of uniparental gene expression, called imprinting, is not restricted to plants, but also occurs in some human genes which are known to regulate the development of the placenta to control the supply of maternal nutrients during fetal growth.

While scientists have known for a while of the existence of such imprinted genes in humans and other mammals, this is the first time a parallel gene to regulate nutrient provisioning during seed development has been identified in the plant world.

The findings mean that scientists can now focus on using the gene and understanding the mechanism by which it is expressed to increase seed size and productivity in major crop plants.

Dr Jose Gutierrez-Marcos, Associate Professor in the University of Warwick's School of Life Sciences, said: "These findings have significant implications for global agriculture and food security, as scientists now have the molecular know-how to manipulate this gene by traditional plant breeding or through other methods to improve seed traits, such as increased seed biomass yield.

"This understanding of how maize seeds and other cereal grains develop -- for example in rice and wheat -- is vital as the global population relies on these staple products for sustenance."

"To meet the demands of the world's growing population in years to come, scientists and breeders must work together to safeguard and increase agricultural production."

Professor Hugh Dickinson of Oxford University's Department of Plant Sciences added: "While the identification of MEG1 is an important discovery in its own right, it also represents a real breakthrough in unravelling the complex gene pathways that regulate the provisioning and nutritional content of seeds."

The research, supported by the European Union, the Biotechnology and Biological Sciences Research Council (BBSRC) and the Royal Society , is published in Current Biology under the title Maternal control of nutrient allocation in plant seeds by genomic imprinting.


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. LilianaM. Costa, Jing Yuan, Jacques Rouster, Wyatt Paul, Hugh Dickinson, JoseF. Gutierrez-Marcos. Maternal Control of Nutrient Allocation in Plant Seeds by Genomic Imprinting. Current Biology, 2012; DOI: 10.1016/j.cub.2011.11.059

Cite This Page:

University of Warwick. "Discovery of plant 'nourishing gene' brings hope for increased crop seed yield and food security." ScienceDaily. ScienceDaily, 13 January 2012. <www.sciencedaily.com/releases/2012/01/120113102054.htm>.
University of Warwick. (2012, January 13). Discovery of plant 'nourishing gene' brings hope for increased crop seed yield and food security. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/01/120113102054.htm
University of Warwick. "Discovery of plant 'nourishing gene' brings hope for increased crop seed yield and food security." ScienceDaily. www.sciencedaily.com/releases/2012/01/120113102054.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins