Featured Research

from universities, journals, and other organizations

Snakes improve search-and-rescue robots: New design uses less energy

Date:
January 19, 2012
Source:
Georgia Institute of Technology
Summary:
Researchers have studied the movements of snakes to create more efficient search-and-rescue robots.

Designing an all-terrain robot for search-and-rescue missions is an arduous task for scientists. The machine must be flexible enough to move over uneven surfaces, yet not so big that it’s restricted from tight spaces.
Credit: Image courtesy of Georgia Institute of Technology

Designing an all-terrain robot for search-and-rescue missions is an arduous task for scientists. The machine must be flexible enough to move over uneven surfaces, yet not so big that it's restricted from tight spaces. It might also be required to climb slopes of varying inclines. Existing robots can do many of these things, but the majority require large amounts of energy and are prone to overheating. Georgia Tech researchers have designed a new machine by studying the locomotion of a certain type of flexible, efficient animal.

Related Articles


"By using their scales to control frictional properties, snakes are able to move large distances while exerting very little energy," said Hamid Marvi, a Mechanical Engineering Ph.D. candidate at Georgia Tech.

While studying and videotaping the movements of 20 different species at Zoo Atlanta, Marvi developed Scalybot 2, a robot that replicates rectilinear locomotion of snakes. He unveiled the robot this month at the Society for Integrative & Comparative Biology (SICB) annual meeting in Charleston, S.C.

"During rectilinear locomotion, a snake doesn't have to bend its body laterally to move," explained Marvi. "Snakes lift their ventral scales and pull themselves forward by sending a muscular traveling wave from head to tail. Rectilinear locomotion is very efficient and is especially useful for crawling within crevices, an invaluable benefit for search-and-rescue robots."

Scalybot 2 can automatically change the angle of its scales when it encounters different terrains and slopes. This adjustment allows the robot to either fight or generate friction. The two-link robot is controlled by a remote-controlled joystick and can move forward and backward using four motors.

"Snakes are highly maligned creatures," said Joe Mendelson, curator of herpetology at Zoo Atlanta. "I really like that Hamid's research is showing the public that snakes can help people."

Marvi's advisor is David Hu, an assistant professor in the Schools of Mechanical Engineering and Biology. Hu and his research team are primarily focused on animal locomotion. They've studied how dogs and other animals shake water off their bodies and how mosquitos fly through rainstorms.

This isn't the first time Hu's lab has looked at snake locomotion. Last summer the team developed Scalybot 1, a two-link climbing robot that replicates concertina locomotion. The push-and-pull, accordion-style movement features alternating scale activity.

This project is supported by the National Science Foundation (NSF) (Award No. PHY-0848894).


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Snakes improve search-and-rescue robots: New design uses less energy." ScienceDaily. ScienceDaily, 19 January 2012. <www.sciencedaily.com/releases/2012/01/120119101237.htm>.
Georgia Institute of Technology. (2012, January 19). Snakes improve search-and-rescue robots: New design uses less energy. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/01/120119101237.htm
Georgia Institute of Technology. "Snakes improve search-and-rescue robots: New design uses less energy." ScienceDaily. www.sciencedaily.com/releases/2012/01/120119101237.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
France's Sauternes Wine Threatened by New Train Line

France's Sauternes Wine Threatened by New Train Line

AFP (Dec. 16, 2014) Winemakers in southwestern France's Bordeaux are concerned about a proposed high speed train line that could affect the microclimate required for the region's sweet wine. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins