Featured Research

from universities, journals, and other organizations

Collective action: Occupied genetic switches hold clues to cells' history

Date:
February 3, 2012
Source:
European Molecular Biology Laboratory (EMBL)
Summary:
If you wanted to draw your family tree, you could start by searching for people who share your surname. Cells, of course, don’t have surnames, but scientists have found that genetic switches called enhancers, and the molecules that activate those switches – transcription factors – can be used in a similar way, as clues to a cell’s developmental history. The study also unveils a new model for how enhancers function.

Fruit fly embryo showing the cells that will become gut (green/yellow) and heart (red) muscle.
Credit: EMBL/Furlong

If you wanted to draw your family tree, you could start by searching for people who share your surname. Cells, of course, don't have surnames, but scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found that genetic switches called enhancers, and the molecules that activate those switches -- transcription factors -- can be used in a similar way, as clues to a cell's developmental history.

Related Articles


The study, published February 3 in Cell, also unveils a new model for how enhancers function.

Looking at fruit fly embryos, Guillaume Junion and Mikhail Spivakov, collaborating scientists in the groups of Eileen Furlong at EMBL and Ewan Birney at EMBL's European Bioinformatics Institute (EMBL-EBI), found that, in heart muscle cells, enhancers which are meant to be active aren't the only ones that have groups of transcription factors attached. Surprisingly, enhancers that should be active only in the neighbouring gut muscle were also occupied by transcription factors in heart cells.

"Although it may seem counter-intuitive to leave unnecessary genetic switches available for activation and then have to actively suppress them, the findings make sense in developmental terms," says Furlong.

Both heart and gut muscle cells develop from the same pool of precursor cells. Enhancers for both groups seem to be made available to transcription factors in the precursor cells, before they 'grow up' to be either heart or muscle cells. If this is the case, scientists could work out the relationships between cells by looking at what occupied enhancers they share.

Intriguingly, heart muscle cells don't actually have the transcription factors that bind to gut enhancers in gut muscle cells. Instead, the gut enhancers in heart cells were occupied by transcription factors produced only by the heart.

Furlong and colleagues found that transcription factors are able to attach themselves to enhancers in groups, with some transcription factors binding directly to the enhancer's DNA and others binding to those enhancer-bound transcription factors. This means that the genetic sequence of these enhancers can vary greatly, yet they are occupied as a united group -- a strategy that differs from the two ways in which enhancers were already known to function. This flexibility in the enhancer's genetic sequence means that it can mutate without disastrous effects, giving it some evolutionary flexibility.

The EMBL scientists are now investigating how far that flexibility extends. They are looking at variation between species, extending their studies to another species of fruit fly, Drosophila virilis, which is, genetically speaking, as different from the commonly-used Drosophila melanogaster as humans are from chickens.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory (EMBL). Note: Materials may be edited for content and length.


Journal Reference:

  1. Guillaume Junion, Mikhail Spivakov, Charles Girardot, Martina Braun, E.Hilary Gustafson, Ewan Birney, EileenE.M. Furlong. A Transcription Factor Collective Defines Cardiac Cell Fate and Reflects Lineage History. Cell, 2012; 148 (3): 473 DOI: 10.1016/j.cell.2012.01.030

Cite This Page:

European Molecular Biology Laboratory (EMBL). "Collective action: Occupied genetic switches hold clues to cells' history." ScienceDaily. ScienceDaily, 3 February 2012. <www.sciencedaily.com/releases/2012/02/120203092000.htm>.
European Molecular Biology Laboratory (EMBL). (2012, February 3). Collective action: Occupied genetic switches hold clues to cells' history. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/02/120203092000.htm
European Molecular Biology Laboratory (EMBL). "Collective action: Occupied genetic switches hold clues to cells' history." ScienceDaily. www.sciencedaily.com/releases/2012/02/120203092000.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins