Featured Research

from universities, journals, and other organizations

Light shed on how body fends off bacteria

Date:
February 16, 2012
Source:
The Scripps Research Institute
Summary:
Scientists have developed the first 3D look at the interaction between an immune sensor and a protein that helps bacteria move.

This shows the structure of bacterial flagellin protein bound to TLR5.
Credit: The Scripps Research Institute

Team develops first 3D look at interaction between immune sensor and protein that helps bacteria move

Related Articles


To invade organisms such as humans, bacteria make use of a protein called flagellin, part of a tail-like appendage that helps the bacteria move about. Now, for the first time, a team led by scientists at The Scripps Research Institute and Sanford-Burnham Medical Research Institute has determined the 3D structure of the interaction between this critical bacterial protein and an immune molecule called TLR5, shedding light on how the body protects itself from such foreign invaders.

The study, published February 17 in Science, not only helps decipher the molecular mechanism underlying TLR5 recognition and function, but it also advances knowledge that’s key to the design of new therapeutics.

“The structure of the TLR5-flagellin complex visualizes molecular events that occur on the cell surface to trigger flagellin-induced host immune responses, and provides significant insights into the structural basis for TLR5 recognition and signaling,” said Ian Wilson, D.Sc., Hansen Professor of Structural Biology at Scripps Research who led the study with Andrei Osterman, Ph.D., professor in Sanford-Burnham’s Infectious and Inflammatory Disease Center.

“Gaining knowledge of a molecular interaction and action—as we did in this study— is critically important to the further development of therapeutics based on agonists and antagonists of the TLR5 receptor,” said Osterman.

Flagellin is a component in some vaccines and a derivative of this protein is currently being developed as a medical countermeasure to radiation by Cleveland BioLabs, Inc. (NASDAQ:CBLI), also a contributor to the new study.

Keeping an eye out for infection

Some of the body’s first lines of defense against invading bacteria are Toll-like receptors (TLRs), sensors that sit on the surface of many different types of cells. There are roughly a dozen different TLRs, each keeping an eye out for a particular sign of infection.

TLR5, for example, specifically recognizes and binds to flagellin. Like most TLRs, TLR5 does more than just sense bacteria—it also sends signals that call up immune cells to destroy the intruder. But to fully understand how TLR5 works, scientists needed to be able to see its 3D shape and how it binds to flagellin.

The structures of several other TLRs had already been solved, but each of these binds non-protein molecules, such as RNA or lipids. For technical reasons, determining the structure of TLR5—the only TLR that binds a protein—had long been a challenge.

In this study, the Scripps Research team was able to overcome these hurdles using TLR5 found in zebrafish as a proxy for the human protein. The scientists were then able to apply a technique called X-ray crystallography, which uses powerful X-ray beams to produce 3D images of proteins at the atomic level.

At Sanford-Burnham, Osterman and his team used biochemical and protein engineering methods to unravel the mechanistic details of interactions between TLR5 and flagellin and its derivatives.

Scientists at Roswell Park Cancer Institute and Cleveland BioLabs, Inc. in Buffalo, under the leadership of Andrei Gudkov, Ph.D., performed complementary experiments in human cells expressing TLR5 and validated the fish TLR5 as a good surrogate for human TLR5.

This research was funded by the National Institute of Allergy and Infectious Diseases, the Skaggs Institute for Chemical Biology at Scripps Research, and Cleveland BioLabs, Inc. In addition to Wilson, Osterman, and Gudkov, the study’s co-authors include Sung-il Yoon, Scripps Research; Oleg Kurnasov, Sanford-Burnham; Venkatesh Natarajan, Roswell Park Cancer Institute; and Minsun Hong, Scripps Research.


Story Source:

The above story is based on materials provided by The Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. S.-i. Yoon, O. Kurnasov, V. Natarajan, M. Hong, A. V. Gudkov, A. L. Osterman, I. A. Wilson. Structural Basis of TLR5-Flagellin Recognition and Signaling. Science, 2012; 335 (6070): 859 DOI: 10.1126/science.1215584

Cite This Page:

The Scripps Research Institute. "Light shed on how body fends off bacteria." ScienceDaily. ScienceDaily, 16 February 2012. <www.sciencedaily.com/releases/2012/02/120216143955.htm>.
The Scripps Research Institute. (2012, February 16). Light shed on how body fends off bacteria. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2012/02/120216143955.htm
The Scripps Research Institute. "Light shed on how body fends off bacteria." ScienceDaily. www.sciencedaily.com/releases/2012/02/120216143955.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lioness Has Rare Five-Cub Litter

Raw: Lioness Has Rare Five-Cub Litter

AP (Mar. 27, 2015) — A lioness in Pakistan has given birth to five cubs, twice the usual size of a litter. Queen gave birth to two other cubs just nine months ago. (March 27) Video provided by AP
Powered by NewsLook.com
Jockey Motion Tracking Reveals Racing Prowess

Jockey Motion Tracking Reveals Racing Prowess

Reuters - Innovations Video Online (Mar. 26, 2015) — Using motion tracking technology, researchers from the Royal Veterinary College (RVC) are trying to establish an optimum horse riding style to train junior jockeys, as well as enhance safety, health and well-being of both racehorses and jockeys. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Bear Cubs Tumble for the Media

Bear Cubs Tumble for the Media

Reuters - Light News Video Online (Mar. 26, 2015) — Two Andean bear cubs are unveiled at the U.S. National Zoo in Washington, D.C. Alicia Powell reports. Video provided by Reuters
Powered by NewsLook.com
Botswana Talks to End Illegal Wildlife Trade

Botswana Talks to End Illegal Wildlife Trade

AFP (Mar. 25, 2015) — Experts are gathering in Botswana to try to end the illegal wildlife trade that is decimating populations of elephants, rhinos and other threatened species. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins