Featured Research

from universities, journals, and other organizations

Inside the cell nucleus: A foot in the door to genetic information

Date:
March 7, 2012
Source:
Helmholtz Association of German Research Centres
Summary:
In the cell nucleus, DNA wraps around what are called histone proteins, forming regularly spaced spherical bodies called nucleosomes. Thus, large portions of the genetic material are inaccessible to the gene reading machinery. Scientists have now simulated at high time resolution how short DNA segments repeatedly detach spontaneously from the nucleosome. The group has been the first to demonstrate that the spool-shaped histone proteins have an active role in opening access to the genetic information.

In the cell nucleus, DNA wraps around what are called histone proteins, forming regularly spaced spherical bodies called nucleosomes. Thus, large portions of the genetic material are inaccessible to the gene reading machinery. Scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now simulated at high time resolution how short DNA segments repeatedly detach spontaneously from the nucleosome. The group has been the first to demonstrate that the spool-shaped histone proteins have an active role in opening access to the genetic information.

Histones are evolutionary highly conserved proteins which are much the same in man, mouse or threadworm. They serve as coils around which the DNA molecule, a thread of several feet, wraps in the cell nucleus. Up until recent years, histones were believed to be little more than DNA packaging material. However, by now it is known that they also determine which genes are read and which are not read; thus, they actively participate in regulating many cell functions.

At DKFZ, Professor Dr. Jφrg Langowski is studying the interactions of DNA and its "packaging" at a molecular level. "For DNA to be read it must be at least temporarily accessible. We wanted to find out how and, more importantly, for how long histones and DNA thread disassociate from their tightly wrapped state. This gives us a better understanding of how DNA is read and how this mechanism may possibly be disrupted in cancer cells," says Langowski, outlining the goal of his recently published research.

The packaging of DNA in the cell nucleus is extremely well studied: Each DNA spool consists of two molecules each of four different histone proteins. In each nucleosome, a DNA thread of 146 base pairs wraps around this spherical histone complex exactly 1.75 times. A small stretch of unwrapped DNA of variable length is followed by the next histone spool, forming a structure that looks like beads on a string. Prior studies have suggested that there must be a balance of "wrapped" and unwrapped DNA in the cell nucleus.

Langowski and his coworkers have now been able to resolve these interactions at a highly precise timescale using a novel computer simulation. The researchers observed two different spontaneously occurring open states of which the longer-lived one lasts one hundred thousandth of a second, while the shorter-lived one, during which exactly nine DNA building blocks dissociate from the nucleosome, lasts no more than a few millionths of a second. The group discovered that in both cases the free end of the H3 histone actively moves between protein core and DNA, thus detaching short DNA segments. The investigators assume that once the DNA segments are released from the protein binding, more segments of the DNA thread can be unwrapped more easily.

An interesting observation in this context is that the cell attaches a multitude of chemical, or what is called epigenetic, tags to exactly this free end of the H3 histone. These tags -- which are often altered in tumor cells -- have an influence on which genes are read and which are not. "Our observations now also confirm at an atomic level that the H3 tail plays a key role in determining when DNA is accessible and genes can be read and when this is not the case. It is what you could call a foot in the door to access the genetic information," said Langowski interpreting his results.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karine Voltz, Joanna Trylska, Nicolas Calimet, Jeremy C. Smith, Jφrg Langowski. Unwrapping of Nucleosomal DNA Ends: A Multiscale Molecular Dynamics Study. Biophysical Journal, 2012; 102 (4): 849 DOI: 10.1016/j.bpj.2011.11.4028

Cite This Page:

Helmholtz Association of German Research Centres. "Inside the cell nucleus: A foot in the door to genetic information." ScienceDaily. ScienceDaily, 7 March 2012. <www.sciencedaily.com/releases/2012/03/120307094618.htm>.
Helmholtz Association of German Research Centres. (2012, March 7). Inside the cell nucleus: A foot in the door to genetic information. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/03/120307094618.htm
Helmholtz Association of German Research Centres. "Inside the cell nucleus: A foot in the door to genetic information." ScienceDaily. www.sciencedaily.com/releases/2012/03/120307094618.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) — Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) — Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins