Featured Research

from universities, journals, and other organizations

Mercury's surprising core and landscape curiosities

Date:
March 21, 2012
Source:
Carnegie Institution
Summary:
Scientists have found that Mercury's core, already suspected to occupy a greater fraction of the planet's interior than do the cores of Earth, Venus, or Mars, is even larger than anticipated. They also discovered that the elevation ranges on Mercury are much smaller than on Mars or the Moon and indicates that there have been large-scale changes to Mercury's topography since early in the planet's geological history.

Mercury's core, already suspected to occupy a greater fraction of the planet's interior than do the cores of Earth, Venus, or Mars, is even larger than anticipated, researchers have found.
Credit: MESSENGER/NASA

On March 17, the tiny MESSENGER spacecraft completed its primary mission to orbit and observe the planet Mercury for one Earth-year. The bounty of surprises from the mission has completely altered our understanding of the solar system's innermost planet. As reported in one of two papers published recently on Science Express, scientists have found that Mercury's core, already suspected to occupy a greater fraction of the planet's interior than do the cores of Earth, Venus, or Mars, is even larger than anticipated. The companion paper shows that the elevation ranges on Mercury are much smaller than on Mars or the Moon and documents evidence that there have been large-scale changes to Mercury's topography since the earliest phases of the planet's geological history.

Related Articles


The mission's many successes have allowed it to be extended for another year. "The first year of MESSENGER orbital observations has yielded a wonderful harvest of results," says MESSENGER Principal Investigator Sean Solomon, of the Carnegie Institution and a coauthor of the two papers. "From Mercury's extraordinarily dynamic magnetosphere and exosphere to the unexpectedly volatile-rich composition of its surface and interior, our inner planetary neighbor is now seen to be very different from what we imagined just a few years ago. The number and diversity of new findings being presented this week to the scientific community in these papers and in presentations at this week's Lunar and Planetary Science Conference provide a striking measure of how much we have learned to date."

A Surprising Core

MESSENGER's radio tracking has allowed the scientific team to develop the first precise model of Mercury's gravity field which, when combined with topographic data and the planet's spin state, sheds light on the planet's internal structure, the thickness of its crust, the size and state of its core, and its tectonic and thermal history.

Mercury's core occupies a large fraction of the planet, about 85% of the planetary radius, even larger than previous estimates. Because of the planet's small size, at one time many scientists thought the interior should have cooled to the point that the core would be solid. However, subtle dynamical motions measured from Earth-based radar, combined with MESSENGER's newly measured parameters of the gravity field and the characteristics of Mercury's internal magnetic field that signify an active core dynamo, indicate that the planet's core is at least partially liquid.

Mercury's core is different from any other planetary core in the Solar System. Earth has a metallic, liquid outer core sitting above a solid inner core. Mercury appears to have a solid silicate crust and mantle overlying a solid, iron sulfide outer core layer, a deeper liquid core layer, and possibly a solid inner core. These results have implications for how Mercury's magnetic field is generated and for understanding how the planet evolved thermally.

Landscape Curiosities

A planet's topography can reveal fundamental information about its internal structure and its geological and thermal evolution. Ranging observations from MESSENGER's Mercury Laser Altimeter (MLA) have provided the first-ever precise topographic model of the planet's northern hemisphere and characterized slopes and surface roughness over a range of spatial scales. From MESSENGER's eccentric, near-polar orbit, the MLA illuminates surface areas as wide as 15 to 100 meters (50 -325 feet), spaced about 400 meters apart (1,300 feet).

The spread in elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive area of lowlands at high northern latitudes that hosts the volcanic northern plains. Within this lowland region is a broad topographic rise that formed after the volcanic plains were emplaced.

At mid-latitudes, the interior plains of the Caloris impact basin -- 1,550 kilometers (960 miles) in diameter -- have been modified so that part of the basin floor now stands higher than the rim. The elevated portion appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. These features imply that large-scale changes to Mercury's topography occurred after the era of impact basin formation and large-scale emplacement of volcanic plains had ended.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal References:

  1. David E. Smith, Maria T. Zuber, Roger J. Phillips, Sean C. Solomon, Steven A. Hauck II, Frank G. Lemoine, Erwan Mazarico, Gregory A. Neumann, Stanton J. Peale, Jean-Luc Margot, Catherine L. Johnson, Mark H. Torrence, Mark E. Perry, David D. Rowlands, Sander Goossens, James W. Head, and Anthony H. Taylor. Gravity Field and Internal Structure of Mercury from MESSENGER. Science, 21 March 2012 DOI: 10.1126/science.1218809
  2. Maria T. Zuber, David E. Smith, Roger J. Phillips, Sean C. Solomon, Gregory A. Neumann, Steven A. Hauck II, Stanton J. Peale, Olivier S. Barnouin, James W. Head, Catherine L. Johnson, Frank G. Lemoine, Erwan Mazarico, Xiaoli Sun, Mark H. Torrence, Andrew M. Freed, Christian Klimczak, Jean-Luc Margot, Jόrgen Oberst, Mark E. Perry, Ralph L. McNutt Jr., Jeffrey A. Balcerski, Nathalie Michel, Matthieu J. Talpe, and Di Yang. Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry. Science, 21 March 2012 DOI: 10.1126/science.1218805

Cite This Page:

Carnegie Institution. "Mercury's surprising core and landscape curiosities." ScienceDaily. ScienceDaily, 21 March 2012. <www.sciencedaily.com/releases/2012/03/120321105505.htm>.
Carnegie Institution. (2012, March 21). Mercury's surprising core and landscape curiosities. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/03/120321105505.htm
Carnegie Institution. "Mercury's surprising core and landscape curiosities." ScienceDaily. www.sciencedaily.com/releases/2012/03/120321105505.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Space & Time News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) — NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Geminids Meteor Shower Lights Up Skies in China

Geminids Meteor Shower Lights Up Skies in China

AFP (Dec. 16, 2014) — The Geminids meteor shower lights up the skies over the Changbai Mountains in northeast China. Duration: 01:03 Video provided by AFP
Powered by NewsLook.com
Raw: Defense Satellite Launches from California

Raw: Defense Satellite Launches from California

AP (Dec. 13, 2014) — A U.S. defense satellite launched from California's central coast on Friday after weather delays caused by a major storm that drenched the state. (Dec. 13) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins