Featured Research

from universities, journals, and other organizations

Simple 3-D grid structure underlying complexity of primate brain

Date:
March 29, 2012
Source:
Massachusetts General Hospital
Summary:
How do you build a brain? Scientists how present a surprising answer, reporting their discovery of a remarkably simple organizational structure in the brains of humans and other primates. Employing sophisticated mathematical analysis of advanced imaging data, they found that the pathways carrying neural signals through the brain are arranged not in a disorganized tangle but in a curved, three-dimensional grid.

This is a diffusion spectrum MR image of human brain showing curvature of two-dimensional sheets of parallel neuronal fibers that cross each other at right angles.
Credit: Van Wedeen, M.D., Martinos Center for Biomedical Imaging, Massachusetts General Hospital

How do you build a brain? In the March 30 issue of Science a team of investigators presents a surprising answer, reporting their discovery of a remarkably simple organizational structure in the brains of humans and other primates. Employing sophisticated mathematical analysis of advanced imaging data, they found that the pathways carrying neural signals through the brain are arranged not in a disorganized tangle but in a curved, three-dimensional grid.

"We found the brain is built from parallel and perpendicular fibers that cross each other in an orderly fashion. Finding this kind of simple organization in the forebrain of higher animals was completely unsuspected," says Van Wedeen, MD, of the Martinos Center for Biomedical Imaging at Massachusetts General Hospital, who led the study. "Knowing there is a simple plan that, modified by evolution and development, gives rise to all brains has implications for researchers working to build an atlas of brain connections, for pursuing investigation of how the brain develops and for expanding theories of how the brain works."

It is well known that neural pathways in the spinal cord and brain stem are organized in three principal directions -- head to tail, side to side, and front to back -- all of which are either parallel or perpendicular to each other and reflect the basic patterns of embryonic development. But following those pathways into the brains of higher animals -- particularly into the cerebral cortex -- has been challenging because each pathway crosses many others within a small space. Previous studies that followed the movement of tracer chemicals injected into specific brain regions could track the progress of single pathways only and could not be used in human participants.

In the current study, Wedeen and his colleagues used diffusion spectrum MR imaging -- a technology he developed that reveals the orientation of all fibers that cross a particular point on a pathway -- coupled with mathematical analysis of all crossing or adjacent pathways in the brains of four species of non-human primates and in human volunteers. Wedeen's previous studies of animal brains had revealed parallel crossing pathways that appeared to form sheet-like structures, but it was not clear whether those structures were pervasive or only characterized a few brain systems.

The analysis revealed that all crossing or adjacent fibers were either perpendicular or parallel to the original pathway. Each of the crossing fibers was, in turn, crossed by its own perpendicular fibers, interwoven like the threads in a sheet of fabric, that defined box-like, three-dimensional curved grid structures. The same grid-like pattern was seen throughout the white matter of the brains of all four studied non-human primates -- rhesus monkeys, owl monkeys, marmosets and galagos -- and the human volunteers.

"I don't think anyone suspected the brain would have this sort of pervasive geometric pattern," Wedeen says. "Although our findings could be described as a new longitude and latitude for the brain, they're also leading us to an entirely new understanding of how and why the brain is organized the way it is. The old image of the brain as a tangle of thousands of discrete, unconnected wires didn't make sense from an evolutionary standpoint. How could natural selection guide each of those wires into more efficient, advantageous configurations?

"The very simplicity of this grid structure is the reason why it can accomodate the random, gradual changes of evolution," he continues. "It's easier for a simple structure to change and adapt, whether we're talking about the big changes that occur across evolution or the changes that can occur during an individual's lifetime -- both the normal neuroplasticity associated with development and learning or the damage that results from injury or disease. A simple grid structure makes both evolutionary and develomental sense." Wedeen is an associate professor of Radiology at Harvard Medical School and on the faculty of the Harvard-MIT Health Sciences and Technology Program.

Additional co-authors of the Science article are Ruopeng Wang and Guangping Dai of the Martinos Center; Douglas Rosene and Farzad Mortazavi, Boston University Medical Center; Patric Hagmann, University of Lausanne, Switzerland; Jon Kaas, Vanderbilt University; and Wen-Yih Tseng, National Taiwan University College of Medicine. The study was supported by grants from the National Science Foundation, the National Institutes of Health and the Human Connectome Project of the NIH.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Van J. Wedeen, Douglas L. Rosene, Ruopeng Wang, Guangping Dai, Farzad Mortazavi, Patric Hagmann, Jon H. Kaas, and Wen-Yih I. Tseng. The Geometric Structure of the Brain Fiber Pathways. Science, 30 March 2012: 1628-1634 DOI: 10.1126/science.1215280

Cite This Page:

Massachusetts General Hospital. "Simple 3-D grid structure underlying complexity of primate brain." ScienceDaily. ScienceDaily, 29 March 2012. <www.sciencedaily.com/releases/2012/03/120329141920.htm>.
Massachusetts General Hospital. (2012, March 29). Simple 3-D grid structure underlying complexity of primate brain. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2012/03/120329141920.htm
Massachusetts General Hospital. "Simple 3-D grid structure underlying complexity of primate brain." ScienceDaily. www.sciencedaily.com/releases/2012/03/120329141920.htm (accessed April 19, 2014).

Share This



More Mind & Brain News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Brain Wiring a No-Brainer?

Mar. 29, 2012 The brain appears to be wired more like the checkerboard streets of New York City than the curvy lanes of Columbia, Md., suggests a new brain imaging study. The most detailed images, to date, reveal ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins