Featured Research

from universities, journals, and other organizations

Molecular mechanism contributing to cardiomyopathy elucidated

Date:
April 1, 2012
Source:
Helmholtz Association of German Research Centres
Summary:
Cardiomyopathy comprises a deterioration of the heart muscle that affects the organ's ability to efficiently pump blood through the body. Forms of the disease were tied to the alternative splicing of titin, a giant protein that determines the heart`s structure and biomechanical properties, but the molecular mechanism remained unknown. Scientists have now found that a gene tied to hereditary cardiomyopathy, regulates titin splicing. Their findings could lead to improve diagnosis and therapies.

Cardiomyopathy comprises a deterioration of the heart muscle that affects the organ's ability to efficiently pump blood through the body. Previously researchers have tied forms of the disease to the alternative splicing of titin, a giant protein that determines the structure and biomechanical properties of the heart, but the molecular mechanism remained unknown.

Related Articles


Professor Michael Gotthardt and Professor Norbert Hübner of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, and colleagues have found that the RNA binding motif protein 20 (RBM20), a gene previously tied to hereditary cardiomyopathy, regulates titin splicing. Understanding this molecular mechanism behind heart function and failure, could lead to more efficient molecular diagnosis and therapies for this sometimes insidious disease.

The ventricular filling of the heart is regulated by the different protein isoforms of titin which are produced through alternative splicing, a process in which the protein-coding regions of RNA (the exons) are connected in different ways, resulting in multiple mRNAs (messenger RNAs) that give rise to many proteins.

Professor Marion Greaser of the University of Wisconsin-Madison, USA, had recently identified a naturally occurring rat strain deficient in titin splicing, which resulted in an elongated titin protein. "Titin naturally shortens around birth as the blood flow is redirected through the heart," Professor Gotthardt explained, "but these rats maintained the excessively long embryonic titin isoforms, which suggests a cause for their cardiomyopathy."

Using genome-wide mapping techniques, the researchers found a loss-of-function mutation in RBM20 in all the rats that expressed the pathological titin isoform. The rats with this mutation also shared many phenotypic similarities with human patients suffering from RBM20 related cardiomyopathy; specifically, ventricular enlargement, arrhythmia, increased rate of sudden death, and extensive fibrosis.

The researchers also identified a set of 31 genes shared by humans and rats that regulate splicing with RBM20. Included in this group was titin, thus validating the group's previous findings. Many of these genes have previously been tied to cardiomyopathy, ion-homeostasis, and sarcomere biology and future analysis will help resolve their individual contribution to the progression of the disease.

Towards utilizing these findings in a clinical setting, Professor Gotthardt has developed a technique to characterize the functional consequences of individual RBM20 mutations. "We can help patients learn if their RBM20 mutation will likely result in the severe form of the disease so that their physician can devise an appropriate therapy," added Professor Gotthardt. "We are currently utilizing this information to develop novel therapeutic strategies for patients suffering from severe forms of cardiomyopathy."


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Guo, Sebastian Schafer, Marion L Greaser, Michael H Radke, Martin Liss, Thirupugal Govindarajan, Henrike Maatz, Herbert Schulz, Shijun Li, Amanda M Parrish, Vita Dauksaite, Padmanabhan Vakeel, Sabine Klaassen, Brenda Gerull, Ludwig Thierfelder, Vera Regitz-Zagrosek, Timothy A Hacker, Kurt W Saupe, G William Dec, Patrick T Ellinor, Calum A MacRae, Bastian Spallek, Robert Fischer, Andreas Perrot, Cemil Özcelik, Kathrin Saar, Norbert Hubner, Michael Gotthardt. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nature Medicine, 2012; DOI: 10.1038/nm.2693

Cite This Page:

Helmholtz Association of German Research Centres. "Molecular mechanism contributing to cardiomyopathy elucidated." ScienceDaily. ScienceDaily, 1 April 2012. <www.sciencedaily.com/releases/2012/04/120401135341.htm>.
Helmholtz Association of German Research Centres. (2012, April 1). Molecular mechanism contributing to cardiomyopathy elucidated. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/04/120401135341.htm
Helmholtz Association of German Research Centres. "Molecular mechanism contributing to cardiomyopathy elucidated." ScienceDaily. www.sciencedaily.com/releases/2012/04/120401135341.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins