Featured Research

from universities, journals, and other organizations

Finding the roots and early branches of the tree of life

Date:
April 19, 2012
Source:
Public Library of Science
Summary:
A new study maps the development of life-sustaining chemistry to the history of early life. Researchers have traced the six methods of carbon fixation seen in modern life back to a single ancestral form.

A study published in PLoS Computational Biology maps the development of life-sustaining chemistry to the history of early life. Researchers Rogier Braakman and Eric Smith of the Santa Fe Institute traced the six methods of carbon fixation seen in modern life back to a single ancestral form.

Carbon fixation -- life's mechanism for making carbon dioxide biologically useful -- forms the biggest bridge between Earth's non-living chemistry and its biosphere. All organisms that fix carbon do so in one of six ways. These six mechanisms have overlaps, but it was previously unclear which of the six types came first, and how their development interweaved with environmental and biological changes.

The authors used a method that creates "trees" of evolutionary relatedness based on genetic sequences and metabolic traits. From this, they were able to reconstruct the complete early evolutionary history of biological carbon-fixation, relating all ways in which life today performs this function.

The earliest form of carbon fixation identified achieved a special kind of built-in robustness -- not seen in modern cells -- by layering multiple carbon-fixing mechanisms. This redundancy allowed early life to compensate for a lack of refined control over its internal chemistry, and formed a template for the later splits that created the earliest major branches in the tree of life. For example, the first major life-form split came with the earliest appearance of oxygen on Earth, causing the ancestors of blue-green algae and most other bacteria to separate from the branch that includes Archaea, which are outside of bacteria the other major early group of single-celled microorganisms.

"It seems likely that the earliest cells were rickety assemblies whose parts were constantly malfunctioning and breaking down," explains Smith. "How can any metabolism be sustained with such shaky support? The key is concurrent and constant redundancy."

Once early cells had more refined enzymes and membranes, giving greater control over metabolic chemistry, minimization of energy (ATP) used to create biomass, changes in oxygen levels and alkalinity directed life's unfolding. In other words, the environment drove major divergences in predictable ways, in contrast to the common belief that chance dominated evolutionary innovation -- and that rewinding and replaying the evolutionary tape would lead to an irreconcilably different tree of life.

"Mapping cell function onto genetic history gives us a clear picture of the physiology that led to the major foundational divergences of evolution," explains Braakman. "This highlights the central role of basic chemistry and physics in driving early evolution."

With the ancestral form uncovered, and evolutionary drivers pinned to branching points in the tree, the researchers now want to make the study more mathematically formal and further analyze the early evolution of metabolism.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rogier Braakman, Eric Smith. The Emergence and Early Evolution of Biological Carbon-Fixation. PLoS Computational Biology, 2012; 8 (4): e1002455 DOI: 10.1371/journal.pcbi.1002455

Cite This Page:

Public Library of Science. "Finding the roots and early branches of the tree of life." ScienceDaily. ScienceDaily, 19 April 2012. <www.sciencedaily.com/releases/2012/04/120419191705.htm>.
Public Library of Science. (2012, April 19). Finding the roots and early branches of the tree of life. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/04/120419191705.htm
Public Library of Science. "Finding the roots and early branches of the tree of life." ScienceDaily. www.sciencedaily.com/releases/2012/04/120419191705.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
USDA Cracks Down On Imports From Foreign Puppy Mills

USDA Cracks Down On Imports From Foreign Puppy Mills

Newsy (Aug. 18, 2014) New USDA measures to regulate dog imports aim to crack down on buying dogs from overseas puppy mills. Video provided by Newsy
Powered by NewsLook.com
Bone Marrow Drug Regrows Hair In Some Alopecia Patients

Bone Marrow Drug Regrows Hair In Some Alopecia Patients

Newsy (Aug. 18, 2014) Researchers performed an experiment using an FDA-approved drug known as ruxolitinib. They found it to be successful in the majority of patients. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Following Life's Chemistry to the Earliest Branches on the Tree of Life

Apr. 24, 2012 Scientists have traced the development of life-sustaining chemistry to the earliest forms of life on ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins