Featured Research

from universities, journals, and other organizations

Black holes turn up the heat for the Universe

Date:
May 15, 2012
Source:
Heidelberg Institute for Theoretical Studies
Summary:
Astrophysicists have just discovered a new heating source in cosmological structure formation. Until now, astrophysicists thought that super-massive black holes could only influence their immediate surroundings. Scientists have now discovered that diffuse gas in the universe can absorb luminous gamma-ray emission from black holes, heating it up strongly. This surprising result has important implications for the formation of structures in the universe.

A supermassive black hole is surrounded by a dust ring (torus). The collapse of gas onto the black hole launches an energetic jet of matter and radiation, which is transported over cosmological distances. A jet that is pointing into our direction is called a "blazar."
Credit: ESA/NASA, the AVO project and Paolo Padovani

Astrophysicists have just discovered a new heating source in cosmological structure formation. Until now, astrophysicists thought that super-massive black holes could only influence their immediate surroundings. A collaboration of scientists at the Heidelberg Institute for Theoretical Studies (HITS) and in Canada and the US have now discovered that diffuse gas in the universe can absorb luminous gamma-ray emission from black holes, heating it up strongly. This surprising result has important implications for the formation of structures in the universe.

The results have just been published in The Astrophysical Journal and Monthly Notices of the Royal Astronomical Society.

Every galaxy hosts a supermassive black hole at its center. Such black holes can emit high-energy gamma rays and are then called blazars. Whereas other radiation such as visible light and radio waves traverses the universe without problems, this is not the case for high-energy gamma rays. This particular radiation interacts with the optical light that is emitted by galaxies, transforming it into the elementary particles electrons and positrons. Initially, these elementary particles move almost at the speed of light. But as they are slowed down by the ambient diffuse gas, their energy is converted into heat, just like in other braking processes. As a result, the surrounding gas is heated efficiently. In fact, the temperature of the gas at mean density becomes ten times higher, and in "under-dense" regions more than one hundred times higher than previously thought.

A Journey into the Cosmic Youth

"Blazars rewrite the thermal history of the universe," emphasizes Dr. Christoph Pfrommer (HITS), one of the authors. But how can this idea be tested? In the optical spectra of quasars there is a plethora of lines, called the "line forest." The forest originates from the absorption of ultra-violet light by neutral hydrogen in the young Universe. If the gas becomes hotter, weak lines in the forest are broadened. This effect represents an excellent opportunity to measure temperatures in the early Universe, while it was still growing up. The astrophysicists at HITS checked this newly postulated heating process for the first time with detailed supercomputer simulations of the cosmological growth of structures. Surprisingly, the lines were broadened just enough so that their properties perfectly matched those of the observed lines. "This allows us to elegantly solve a long-standing problem with the quasar data," says Dr. Ewald Puchwein, who conducted the large simulations on the supercomputer at HITS.

How Black Holes Influence the Formation of Galaxies

What are the further consequences of this new heating process? The forest of lines in the quasar spectra originates from density fluctuations in the Universe. In the course of cosmic evolution, the densest fluctuations collapse to form galaxies and galaxy clusters, as observed in the local Universe. Diffuse gas that is too hot cannot collapse. Hence, the formation of dwarf galaxies is slowed or even entirely suppressed. This could be the key to the solution of another long-standing problem in the theory of galaxy formation: why do we observe fewer dwarf galaxies in the vicinity of the Milky Way and in the underdense regions than predicted by cosmological simulations?

Prof. Volker Springel, scientific group leader at HITS, explains: "The process of blazar heating is especially exciting since this single effect is able to simultaneously solve several different puzzles in cosmological structure formation." The group plans to further improve their simulation models for a still deeper understanding of the nature of blazar heating and its implications for today's Universe.


Story Source:

The above story is based on materials provided by Heidelberg Institute for Theoretical Studies. Note: Materials may be edited for content and length.


Journal References:

  1. Ewald Puchwein, Christoph Pfrommer, Volker Springel, Avery E. Broderick, Philip Chang. The Lyman-alpha forest in a blazar-heated Universe. Monthly Notices of the Royal Astronomical Society, 2012 [link]
  2. C. Pfrommer, P. Chang, and A. E. Broderick. The Cosmological Impact of Luminous TeV Blazars III: Implications for Galaxy Clusters and the Formation of Dwarf Galaxies. The Astrophysical Journal, 2012 [link]
  3. P. Chang, A. E. Broderick, and C. Pfrommer. The Cosmological Impact of Luminous TeV Blazars II: Rewriting the Thermal History of the Intergalactic Medium. The Astrophysical Journal, 2012 [link]
  4. A. E. Broderick, P. Chang, and C. Pfrommer. The Cosmological Impact of Luminous TeV Blazars I: Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background. The Astrophysical Journal, 2012 [link]

Cite This Page:

Heidelberg Institute for Theoretical Studies. "Black holes turn up the heat for the Universe." ScienceDaily. ScienceDaily, 15 May 2012. <www.sciencedaily.com/releases/2012/05/120515093947.htm>.
Heidelberg Institute for Theoretical Studies. (2012, May 15). Black holes turn up the heat for the Universe. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/05/120515093947.htm
Heidelberg Institute for Theoretical Studies. "Black holes turn up the heat for the Universe." ScienceDaily. www.sciencedaily.com/releases/2012/05/120515093947.htm (accessed July 31, 2014).

Share This




More Space & Time News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) — The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) — Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins