Featured Research

from universities, journals, and other organizations

Full control of plastic transistors

Date:
May 16, 2012
Source:
Linköping Universitet
Summary:
Transistors made of plastic can be controlled with great precision, according to a new article.

Transistors made of plastic can be controlled with great precision, according to an article in  PNAS by Loïg Kergoat, a researcher at Linköping University in Sweden.

Related Articles


The Organic Electronics Research Group at Linköping University (LiU) in Sweden, led by Professor Magnus Berggren, attracted great attention a year ago when Lars Herlogsson showed in his doctoral thesis that it was possible to construct fully functional field-effect transistors out of plastic.

Kergoat, a post-doc in the same research group, now shows that transistors made of plastic can be controlled with great precision.

If a transistor is to be usable in a logic circuit, the threshold voltage, where the transistor switches from off to on, or zero to one, must be well defined. Kergoat has now shown that by changing the material on the gate electrode, the electrode in a transistor that governs the current through both the other electrodes, the threshold voltage can also gradually be shifted.

"Transistors built from organic electronics need to be able to be controlled with weak voltages, preferably as close to zero as possible," Kergoat says.

By changing the electrode material, for example from gold to calcium, the threshold voltage is reduced by as much as 0.9V.

"This means that we can control exactly one of the most important properties of our transistors, which is of great significance now that we're building circuits of various types," Berggren says.

Research was conducted in collaboration between the Organic Electronics Group in the Linköping University Department of Science and Technology and a research group at the Université Paris Diderot, Paris 7, where Berggren was a guest professor between 2009 and 2011.


Story Source:

The above story is based on materials provided by Linköping Universitet. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Kergoat, L. Herlogsson, B. Piro, M. C. Pham, G. Horowitz, X. Crispin, M. Berggren. Tuning the threshold voltage in electrolyte-gated organic field-effect transistors. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1120311109

Cite This Page:

Linköping Universitet. "Full control of plastic transistors." ScienceDaily. ScienceDaily, 16 May 2012. <www.sciencedaily.com/releases/2012/05/120516093018.htm>.
Linköping Universitet. (2012, May 16). Full control of plastic transistors. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2012/05/120516093018.htm
Linköping Universitet. "Full control of plastic transistors." ScienceDaily. www.sciencedaily.com/releases/2012/05/120516093018.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dutch Architects Show Off 3D House-Building Prowess

Dutch Architects Show Off 3D House-Building Prowess

Reuters - Innovations Video Online (Mar. 31, 2015) — Dutch architects are constructing a 3D-printed canal-side home, which they hope will spark an environmental revolution in the house-building industry. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Stops in China

Solar Plane Stops in China

Reuters - News Video Online (Mar. 31, 2015) — Solar Impulse 2 stops over in China&apos;s Chonqing, completing the fifth leg in its bid to become the first solar powered plane to travel around the globe. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Solar Impulse Lands in China After 20-Hour Flight from Myanmar

Solar Impulse Lands in China After 20-Hour Flight from Myanmar

AFP (Mar. 31, 2015) — Solar Impulse 2 lands in China, the world&apos;s biggest carbon emitter, completing the fifth leg of its landmark global circumnavigation powered solely by the sun. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Bionic Ants Could Be Tomorrow's Factory Workers

Bionic Ants Could Be Tomorrow's Factory Workers

Reuters - Innovations Video Online (Mar. 30, 2015) — Industrious 3D printed bionic ants working together could toil in the factories of the future, says German technology company Festo. The robotic insects cooperate and coordinate their actions and movements to achieve a common aim. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins