Featured Research

from universities, journals, and other organizations

Method for building artificial tissue devised

Date:
May 28, 2012
Source:
New York University
Summary:
Physicists have developed a method that models biological cell-to-cell adhesion that could also have industrial applications.

New York University physicists have developed a method that models biological cell-to-cell adhesion that could also have industrial applications.

Related Articles


This system, created in the laboratory of Jasna Brujić, an assistant professor in NYU's Department of Physics and part of its Center for Soft Matter Research, is an oil-in-water solution whose surface properties reproduce those found on biological cells. Specifically, adhesion between compressed oil droplets mimics the mechanical properties of tissues and opens the path to numerous practical applications, ranging from biocompatible cosmetics to artificial tissue engineering.

Their method is described in the journal the Proceedings of the National Academy of Sciences.

Previously, Brujić's laboratory has determined how spheres pack and devised methods for manipulating the packing process. In this PNAS study, Brujić and her research team sought to create a method that would address the role of packing in tissues from the point of view of how mechanical forces affect protein-protein adhesion between cells.

In biology, cell-to-cell adhesion is crucial to the integrity of tissue structure -- cells must come together and stick in order to ensure tissue cohesion. However, the daunting complexity of biological systems has long prevented their description using general theoretical concepts taken from the physical sciences. For this reason, the research team designed an original biomimetic solution, or emulsion, that reproduces the main features of cell-to-cell adhesion in tissues.

Emulsions form the basis for a range of consumer products, including butter, ice cream, and milk. In addition, the emulsion in the PNAS study is tuned to match the attractive and repulsive interactions that govern adhesion between cells. The experimental conditions reveal the circumstances under which pushing forces are necessary to create adhesion.

By varying the amount of force by which the droplets of oil were compressed by centrifugation and the amount of salt added to this solution, the NYU team was able to isolate the optimal conditions for cell-to-cell adhesion. Screening electrostatic charges by the addition of salt and compressing the droplets by force enhances protein-protein interactions on the droplet surfaces. This leads to adhesion between contacting droplets covering all the interfaces, just as in the case of biological tissues.

Their results, which matched the researchers' theoretical modeling of the process, offer a method for manipulating force and pressure in order to bind emulsions. This serves as a starting point for enriching a range of consumer products, by reconfiguring their molecular make-up to enhance consistency and function, and for improving pharmaceuticals, by bolstering the delivery of therapeutic molecules to the blood stream.

The study's other authors were Lea-Laetitia Pontani, a postdoctoral research scientist, and Ivane Jorjadze, a graduate student, both from NYU's Department of Physics and the Center for Soft Matter Research, as well as Virgile Viasnoff, an Associate Professor at the National University of Singapore and the French research institute, CNRS/ESPCI.

The research was performed in the NYU Materials Research Science and Engineering Center (MRSEC), which is supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "Method for building artificial tissue devised." ScienceDaily. ScienceDaily, 28 May 2012. <www.sciencedaily.com/releases/2012/05/120528154859.htm>.
New York University. (2012, May 28). Method for building artificial tissue devised. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2012/05/120528154859.htm
New York University. "Method for building artificial tissue devised." ScienceDaily. www.sciencedaily.com/releases/2012/05/120528154859.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Driverless Budii Gives the Wheel Feel

Driverless Budii Gives the Wheel Feel

Reuters - Business Video Online (Mar. 6, 2015) The Rinspeed Budii Concept car is creating a driverless stir at this year&apos;s Geneva car show. It&apos;s an all-electric autonomous vehicle with a difference. Ciara Lee reports. Video provided by Reuters
Powered by NewsLook.com
Star Wars Inspires Mobile Holograms

Star Wars Inspires Mobile Holograms

Reuters - Business Video Online (Mar. 6, 2015) 3D holograms could soon be coming to your mobile phone. Inspired by the famous Princess Leia hologram from Star Wars, a U.S. company is showcasing a prototype display at the Mobile World Congress at Barcelona and says it could be used for real-time video calls. Ivor Bennett reports Video provided by Reuters
Powered by NewsLook.com
Game Makers Lured Into Virtual Worlds

Game Makers Lured Into Virtual Worlds

AFP (Mar. 6, 2015) Some 25,000 people have descended upon San Francisco to show off the latest technologies and video games at the Game Developers Conference. Developers here discuss the future of the industry. Duration: 02:20. Video provided by AFP
Powered by NewsLook.com
Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins