Featured Research

from universities, journals, and other organizations

X-ray laser probes biomolecules to individual atoms

Date:
May 31, 2012
Source:
DOE/SLAC National Accelerator Laboratory
Summary:
Scientists have demonstrated how the world's most powerful X-ray laser can assist in cracking the structures of biomolecules, and in the processes helped to pioneer critical new investigative avenues in biology.

This rendering shows a lysozyme structural model against its X-ray diffraction pattern from SLAC’s Linac Coherent Light Source (LCLS), a powerful X-ray laser facility. Researchers have achieved high-resolution images of these simple biomolecules using advanced crystallography at LCLS. This successful demonstration paves the way for studies of more complex biological structures.
Credit: Anton Barty/DESY

An international team led by the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory has proved how the world's most powerful X-ray laser can assist in cracking the structures of biomolecules, and in the processes helped to pioneer critical new investigative avenues in biology.

The team's experiments, reported this week in Science, used SLAC's Linac Coherent Light Source (LCLS) to obtain ultra-high-resolution views of crystallized biomolecules, including a small protein found in egg whites called lysozyme.

For decades, scientists have reconstructed the shape of biological molecules and proteins by illuminating crystallized samples with X-rays to study how they scatter the light. The team's work with lysozyme represents the first-ever high-resolution experiments using serial femtosecond crystallography -- the split-second imaging of tiny crystals using ultrashort, ultrabright X-ray laser pulses (a femtosecond is one quadrillionth of a second).

The technique utilized a higher resolution than previously achieved using X-ray lasers, allowing scientists to use smaller crystals than typical with other methods, and could also enable researchers to view molecular dynamics in a way never before possible.

"We were able to actually visualize the structure of the molecule at a resolution so high we start to infer the position of individual atoms," said Sébastien Boutet, a staff scientist at LCLS who led the research.

"Not only that, but the structure we observed matches the known structure of lysozyme and shows no significant sign of radiation damage, despite the fact that the pulses completely destroy the sample. This is the first high-resolution demonstration of the 'diffraction-before-destruction' technique on biological samples, where we're able to measure a sample before the powerful pulses of the LCLS damage it," he added.

The team chose lysozyme as the first sample for their research because it is easy to crystallize and has been extensively studied. Their work not only determined lysozyme's structure at such high resolution that it showed individual amino acids, but also proved the ability to use extremely small crystals for a range of applications. Boutet says the team has also studied more complex proteins and systems that they are analyzing now.

Ultimately, scientists using LCLS are driving toward an atomic- and molecular-scale understanding of complex biological systems -- such as the membrane proteins that are critical in cell functions and the mechanisms that power photosynthesis -- which could lead to discoveries in a range of sciences, from pharmaceutical breakthroughs to new sources of alternative energy.

The experiment was the first study performed on the new Coherent X-ray Imaging (CXI) instrument, a "molecular camera" designed, built and commissioned by SLAC and now available to the scientific community. Also key to the study was a novel custom-made detector, the Cornell-SLAC Pixel Array Detector (CSPAD), developed in collaboration between Cornell University and SLAC for use at the CXI instrument. "This important demonstration shows that the technique works, and it paves the way for a lot of exciting experiments to come," says Boutet.

Members of the international team included researchers from Max Planck Institutes, DESY, Arizona State University, Cornell University, SUNY Oswego, The Johns Hopkins University Applied Physics Laboratory, the Nikhef National Institute for Subatomic Physics, the European Synchrotron Radiation Facility, the University of Gothenburg, the University of Hamburg, the University of Lübeck and Uppsala University.


Story Source:

The above story is based on materials provided by DOE/SLAC National Accelerator Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sébastien Boutet, Lukas Lomb, Garth J. Williams, Thomas R. M. Barends, Andrew Aquila, R. Bruce Doak, Uwe Weierstall, Daniel P. DePonte, Jan Steinbrener, Robert L. Shoeman, Marc Messerschmidt, Anton Barty, Thomas A. White, Stephan Kassemeyer, Richard A. Kirian, M. Marvin Seibert, Paul A. Montanez, Chris Kenney, Ryan Herbst, Philip Hart, Jack Pines, Gunther Haller, Sol M. Gruner, Hugh T. Philipp, Mark W. Tate, Marianne Hromalik, Lucas J. Koerner, Niels van Bakel, John Morse, Wilfred Ghonsalves, David Arnlund, Michael J. Bogan, Carl Caleman, Raimund Fromme, Christina Y. Hampton, Mark S. Hunter, Linda Johansson, Gergely Katona, Christopher Kupitz, Mengning Liang, Andrew V. Martin, Karol Nass, Lars Redecke, Francesco Stellato, Nicusor Timneanu, Dingjie Wang, Nadia A. Zatsepin, Donald Schafer, James Defever. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography. Science, May 31, 2012 DOI: 10.1126/science.1217737

Cite This Page:

DOE/SLAC National Accelerator Laboratory. "X-ray laser probes biomolecules to individual atoms." ScienceDaily. ScienceDaily, 31 May 2012. <www.sciencedaily.com/releases/2012/05/120531145728.htm>.
DOE/SLAC National Accelerator Laboratory. (2012, May 31). X-ray laser probes biomolecules to individual atoms. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/05/120531145728.htm
DOE/SLAC National Accelerator Laboratory. "X-ray laser probes biomolecules to individual atoms." ScienceDaily. www.sciencedaily.com/releases/2012/05/120531145728.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Free-Electron Lasers Reveal Detailed Architecture of Proteins

May 31, 2012 — Ultrashort flashes of X-radiation allow atomic structures of macromolecules to be obtained even from tiny protein ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins