Featured Research

from universities, journals, and other organizations

Structure of RNAi complex now crystal clear

Date:
June 20, 2012
Source:
Whitehead Institute for Biomedical Research
Summary:
Researchers have determined and analyzed the crystal structure of a yeast Argonaute protein bound to RNA, which plays a key role in the RNA interference (RNAi) pathway that silences genes.

Researchers at Whitehead Institute and Memorial Sloan-Kettering Cancer Center have defined and analyzed the crystal structure of a yeast Argonaute protein bound to RNA. This complex plays a key role in the RNA interference (RNAi) pathway that silences gene expression. Describing the molecular structure of a eukaryotic Argonaute protein has been a goal of the RNAi field for close to a decade.

Related Articles


"You can learn a lot from biochemical experiments, but to more fully understand a protein like Argonaute, it's useful to know where all of the atoms are and which amino acids are playing important roles," says Whitehead Institute Member David Bartel, who is also an MIT professor of biology and a Howard Hughes Medical Institute (HHMI) investigator. "Learning the Argonaute crystal structure is an important step in understanding the RNAi biochemical pathway and will be the basis for many future experiments."

The yeast Argonaute structure is described in the June 21st print issue of Nature.

In humans and most other eukaryotes, the RNAi pathway can reduce cellular protein production by reducing the proteins' RNA templates. By exploiting this pathway, scientists are able to knock down the expression of specific proteins and thereby determine their roles within the cell or organism. The RNAi pathway has also been of considerable interest for the treatment of human disease.

RNAi depends on two proteins, Dicer and Argonaute. Dicer recognizes double-stranded RNA (dsRNA), latches onto it, and chops it into pieces 21-23 nucleotides long. Argonaute recognizes the dsRNA bits, discards one strand, and uses the other as a guide. When a single-stranded RNA matches the guide RNA's sequence, Argonaute cleaves the targeted RNA, thereby preventing it from serving as a template for protein production.

To determine the structure of Argonaute, Bartel and graduate student David Weinberg partnered with Kotaro Nakanishi in Dinshaw Patel's lab at Sloan-Kettering. Although the team expected to solve the structure of Argonaute alone, they were surprised to find that the protein came along with small bits of RNA that were also observed in the structure. The incorporation of these RNAs had switched the protein into an activated state that contained a four-component active site, the identification of which solved a longstanding mystery of what constituted the "missing" fourth component. With the structure of this complex in hand, scientists now have a better understanding for how it works.

"Seeing the crystal structure of a eukaryotic Argonaute for the first time was very exciting -- it's such a large protein with a complicated topology and many moving parts," says Weinberg. "It's a really impressive molecular machine."

This work was supported by National Institutes of Health (NIH), the Human Frontier Science Program, the Japan Society for the Promotion of Science, and the National Science Foundation (NSF).


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. The original article was written by Nicole Giese Rura. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kotaro Nakanishi, David E. Weinberg, David P. Bartel, Dinshaw J. Patel. Structure of yeast Argonaute with guide RNA. Nature, 2012; DOI: 10.1038/nature11211

Cite This Page:

Whitehead Institute for Biomedical Research. "Structure of RNAi complex now crystal clear." ScienceDaily. ScienceDaily, 20 June 2012. <www.sciencedaily.com/releases/2012/06/120620143247.htm>.
Whitehead Institute for Biomedical Research. (2012, June 20). Structure of RNAi complex now crystal clear. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/06/120620143247.htm
Whitehead Institute for Biomedical Research. "Structure of RNAi complex now crystal clear." ScienceDaily. www.sciencedaily.com/releases/2012/06/120620143247.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins