Featured Research

from universities, journals, and other organizations

Molecular mechanism behind deep-sea bacteria's pressure tolerance

Date:
July 26, 2012
Source:
American Crystallographic Association (ACA)
Summary:
A Japanese research team has identified a structural change that confers pressure-resistant properties on a particular protein found in bacteria.

The Mariana Trench is the deepest feature of Earth's surface. The water column there exerts a pressure of more than one thousand times normal atmospheric pressure at sea level, enough pressure to crush an SUV. Yet many organisms thrive in this seemingly inhospitable environment. A Japanese research team has been investigating how deep-sea bacteria adapt to such high-pressure conditions. They have identified a structural change that confers pressure-resistant properties on a particular protein found in bacteria.

Related Articles


The findings, which the team will present at the meeting of the American Crystallographic Association (ACA), held July 28-Aug. 1, in Boston, Mass., may one day help guide the design of enzymes for use in high-pressure chemical industrial processes.

In general, pressure, like that caused by a water column thousands of feet deep, deforms proteins. As the proteins change shape, water can penetrate the protein's interior. Some proteins are better able to resist this incursion of water, but the molecular mechanisms of the pressure resistance aren't yet well understood.

"Our group is focusing on high-pressure protein crystallography, using 3-isopropylmalate dehydrogenase (IPMDH) as a model protein. The goal is to delve into the principles of the molecular mechanism of the pressure tolerance of proteins by comparing the structures of IPMDHs from organisms that thrive in high-pressure environments and those that are sensitive to high-pressure pressure environments," explains Nobuhisa Watanabe, a professor at the Synchrotron Radiation Research Center, Nagoya University.

To create the high pressures necessary for their studies, the team uses a diamond anvil cell (DAC), which consists of two opposing diamonds with a gasket compressed between the culets (the small, flat facet at the bottom of the diamonds).

The team's big discovery so far is that the initial water penetration at the molecular surface of the side opposite to the active site of IPMDH is unique.

"At the site of the penetration, there is a difference of amino acid between IPMDHs from bacteria that thrive in high-pressure environments and those that are sensitive to it. Based on this data, we substituted one amino acid at the site of the IPMDH from pressure-sensitive bacteria and checked its activity under pressure," says Watanabe. "And as we expected, only this one residue-substituted IPMDH, which has 364 amino acids in total, achieved pressure resistance comparable to the bacteria that thrive in high-pressure environments."

This means that it may soon be possible to synthesize designer pressure-resistant proteins. The team plans to continue their high-pressure studies of several other proteins to try to discover the physical principles behind pressure resistance mechanisms that enable bacteria to thrive in high-pressure conditions.


Story Source:

The above story is based on materials provided by American Crystallographic Association (ACA). Note: Materials may be edited for content and length.


Cite This Page:

American Crystallographic Association (ACA). "Molecular mechanism behind deep-sea bacteria's pressure tolerance." ScienceDaily. ScienceDaily, 26 July 2012. <www.sciencedaily.com/releases/2012/07/120726112725.htm>.
American Crystallographic Association (ACA). (2012, July 26). Molecular mechanism behind deep-sea bacteria's pressure tolerance. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2012/07/120726112725.htm
American Crystallographic Association (ACA). "Molecular mechanism behind deep-sea bacteria's pressure tolerance." ScienceDaily. www.sciencedaily.com/releases/2012/07/120726112725.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Whale-Watching Scientists Spot Baby Orca

Whale-Watching Scientists Spot Baby Orca

AP (Feb. 28, 2015) Researchers following endangered killer whales spotted a baby orca off the coast of Washington state, the third birth documented this winter but still leaving the population dangerously low. (Feb. 28) Video provided by AP
Powered by NewsLook.com
The Best Drinks for Your Health

The Best Drinks for Your Health

Buzz60 (Feb. 27, 2015) When it comes to health and fitness, there&apos;s lots of talk about what foods to eat, but there are a few liquids that can promote good nutrition. Krystin Goodwin (@krystingoodwin) has the healthiest drinks to boost your health! Video provided by Buzz60
Powered by NewsLook.com
Cherries, Snap Peas and More Tasty Spring Produce

Cherries, Snap Peas and More Tasty Spring Produce

Buzz60 (Feb. 27, 2015) From sweet cherries to sugar snap peas, spring is the peak season for some of the tastiest and healthiest produce. Krystin Goodwin (@Krystingoodwin) has the best seasonal fruits and veggies to spring in to good health! Video provided by Buzz60
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins