Featured Research

from universities, journals, and other organizations

Is it a rock, or is it Jello? Defining the architecture of rhomboid enzymes

Date:
July 31, 2012
Source:
Johns Hopkins Medicine
Summary:
Scientists have decoded for the first time the “stability blueprint” of an enzyme that resides in a cell’s membrane, mapping which parts of the enzyme are important for its shape and function. These studies could eventually lead to the development of drugs to treat malaria and other parasitic diseases.

Molecular structure of the rhomboid enzyme.
Credit: Image courtesy of Johns Hopkins Medicine

Johns Hopkins scientists have decoded for the first time the "stability blueprint" of an enzyme that resides in a cell's membrane, mapping which parts of the enzyme are important for its shape and function. These studies, published in advance online on June 14 in Structure and on July 15 in Nature Chemical Biology, could eventually lead to the development of drugs to treat malaria and other parasitic diseases.

"[It's] the first time we really understand the architectural logic behind the structure of the enzyme," says Sinisa Urban, Ph.D., an associate professor of molecular biology and genetics at the Johns Hopkins University School of Medicine and an investigator at the Howard Hughes Medical Institute, who with his team has unlocked the mysteries of a special class of enzymes called rhomboid proteases.

Rhomboid proteases are present in many different organisms, and are a unique type of enzyme that resides in the cell's membrane where they cut proteins. Previously Urban and his colleagues demonstrated that the rhomboid enzyme is critical for Plasmodium falciparum, the parasite that causes malaria, to successfully invade red blood cells, a step that ultimately leads to infection. Urban says understanding the stability of rhomboid protease shape may impact the design of enzyme inhibitors -- potential drugs. "These enzymes have no selective inhibitors," says Urban. "We really need to understand how [the enzyme] works -- is it as stiff as a rock, or is it more gummy, like Jell-O?"

One challenge of studying rhomboid enzymes is that they are surrounded by membranes, making them more difficult to manipulate and work with. To address this, Urban's research team turned to a technique known as thermal light scattering, which heats enzyme samples to progressively higher temperatures while measuring the amount of light bouncing back off of the molecules. Enzymes that have broken from their normal shape will scatter light differently, and the temperature at which this occurs (in effect, the breaking point of the enzyme) indicates the inherent stability of the enzyme.

The researchers first precisely measured the stability of the rhomboid enzyme from E. coli bacteria. Surprisingly, says Urban, the rhomboid enzyme was more "Jell-O-like" than other membrane proteins with similar shapes. He guesses that this "jiggly shape" may help rhomboid proteases interact with other proteins that it cuts. To find which parts of the enzyme are most important for maintaining shape and which parts are more crucial for function, the researchers then made and tested 150 differently altered versions of the enzyme. They found four main regions important for maintaining shape and at least two regions important for function.

The researchers also took advantage of computer simulations to test their ideas about how the enzyme functions. Using a computer program model of the enzyme, they programmed in features of its natural membrane environment, which consists mostly of fats and is very limited in water. The computer program then simulated how this environment might influence the enzyme. Researchers found that the enzyme contains a special internal pocket for holding water molecules -- a great advantage in its natural, water-limiting environment.

"We're very excited about our findings and are especially curious about the versions of the enzyme that lost function despite no obvious change in stability or shape," says Urban. Ultimately he hopes that a better understanding of rhomboid proteases will lead to new therapies for treating malaria and other parasitic diseases.

These studies were supported by the Howard Hughes Medical Institute, a National Institute of General Medical Sciences grant (GM079223), a National Institute of Allergy and Infectious Diseases grant (AI066025), the National Science Foundation (NSF) and the David and Lucile Packard Foundation.

Other researchers who participated in this study include Rosanna Baker, Yanzi Zhou, Syed Moin and Yingkai Zhang.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal References:

  1. Rosanna P Baker, Sinisa Urban. Architectural and thermodynamic principles underlying intramembrane protease function. Nature Chemical Biology, 2012; DOI: 10.1038/nchembio.1021
  2. Yanzi Zhou, SyedM. Moin, Sinisa Urban, Yingkai Zhang. An Internal Water-Retention Site in the Rhomboid Intramembrane Protease GlpG Ensures Catalytic Efficiency. Structure, 2012; 20 (7): 1255 DOI: 10.1016/j.str.2012.04.022

Cite This Page:

Johns Hopkins Medicine. "Is it a rock, or is it Jello? Defining the architecture of rhomboid enzymes." ScienceDaily. ScienceDaily, 31 July 2012. <www.sciencedaily.com/releases/2012/07/120731094106.htm>.
Johns Hopkins Medicine. (2012, July 31). Is it a rock, or is it Jello? Defining the architecture of rhomboid enzymes. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/07/120731094106.htm
Johns Hopkins Medicine. "Is it a rock, or is it Jello? Defining the architecture of rhomboid enzymes." ScienceDaily. www.sciencedaily.com/releases/2012/07/120731094106.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins