Featured Research

from universities, journals, and other organizations

Researchers feed pigs, chickens high-protein fungus grown on ethanol leftovers

Date:
August 14, 2012
Source:
Iowa State University
Summary:
A research team is feeding fungi grown on the leftovers of ethanol production to pigs and chickens. The feed-production process also cleans water used to make ethanol, boosting the amount of water that can be recycled back into biofuels.

Christopher Koza, an Iowa State graduate student, examines the MycoMeal pilot plant that improves ethanol production by producing high-protein animal feed and cleaning water used in biofuel production.
Credit: Photo by the Center for Crops Utilization Research

Initial studies show a fungus grown in the leftovers of ethanol production could be a good energy feed for pigs and chickens.

Related Articles


In separate feeding trials, nursery pigs and chickens have eaten high-protein fungi that Hans van Leeuwen and other Iowa State University researchers have produced in a pilot plant that converts ethanol leftovers into food-grade fungi. The production process also cleans some of the water used to produce ethanol, boosting the amount of water that can be recycled back into biofuel production and saving energy on water cleanup and co-product recovery.

So far in the feeding trials, researchers have found pig performance wasn't impacted when dried fungi were substituted for corn or soybean meal, said Nicholas Gabler, an assistant professor of animal science. Researchers are still studying the effects of the feed on amino acid availability, tissue growth, and intestinal health.

The fungi produce a high-energy feed for chickens, said Mike Persia, an assistant professor of animal science. He said more studies need to be done, "but generally I think there's some value there."

The fungi-production process was developed by a research team led by van Leeuwen, a professor of civil, construction and environmental engineering. The process has two patents pending and has won several major awards -- most recently it was named the global grand winner of the International Water Association's 2012 Project Innovation Awards in Applied Research.

"It's a great feeling," van Leeuwen said of the latest award. "The International Water Association is the top water quality organization in the world. We were up against multi-million dollar projects and we've been working on a shoestring. To get this is as gratifying as winning an Olympic medal."

Van Leeuwen, who was named R&D Magazine's 2009 Innovator of the Year, and the research team have been working on their "MycoMeal" process for several years. It began as an idea to improve the dry-grind process used to produce ethanol from corn.

Here's how the process works:

For every gallon of ethanol produced, there are about five gallons of leftovers known as stillage. The stillage contains solids and other organic material. Most of the solids are removed by centrifugation and dried into distillers dried grains that are sold as livestock feed, primarily for cattle.

The remaining liquid, known as thin stillage, still contains some solids, a variety of organic compounds and enzymes. Because the compounds and solids can interfere with ethanol production, only about 50 percent of thin stillage can be recycled back into biofuel production. The rest is evaporated and blended with distillers dried grains.

The Iowa State researchers add fungus (Rhizopus microsporus) to the thin stillage and it feeds and grows into easily harvested pellets in less than a day -- van Leeuwen calls it "lightning-speed farming." The fungus removes about 60 percent of the organic material and most of the solids, allowing the water and enzymes in the thin stillage to be recycled back into production.

The fungus is then harvested and dried as animal feed that's rich in protein, certain essential amino acids, polyunsaturated oils and other nutrients. It can be blended with distillers dried grains to boost its value as a livestock feed and make it more suitable for feeding hogs and chickens. And van Leeuwen hopes the fungal product could one day be a low-cost nutritional supplement for people.

Van Leeuwen said the production technology can save United States ethanol producers up to $800 million a year in energy costs. He also said the technology can produce ethanol co-products worth another $800 million or more per year, depending on how it is used and marketed.

Researchers have developed a 400-gallon pilot plant at the Iowa Energy Center's Biomass Energy Conversion facility in Nevada to test and refine the process. They're producing a ton of the fungi this year for the animal feeding trials. ("That's no minor feat for a pilot plant," van Leeuwen said.)

There has been some commercial interest in the process, van Leeuwen said.

The project has been supported by a three-year, $450,000 grant from the Iowa Energy Center and a Smithfield grant from the Office of the Iowa Attorney General. Lincolnway Energy of Nevada; Cellencor Inc. of the Iowa State University Research Park; and Iowa State's Center for Crops Utilization Research and BioCentury Research Farm are also supporting the project.

In addition to van Leeuwen, Gabler and Persia, the project's research team includes Mary Rasmussen, a former post-doctoral research associate; Duygu Ozsoy, a current post-doctoral research associate in civil, construction and environmental engineering; Daniel Erickson and Christopher Koza, graduate students in civil, construction and environmental engineering; students Alexandra Bruns, Scott Karagiorgas, Weston Kleinert, Jessica Maciel and Shashank Ravi; and Debjani Mitra, a doctoral graduate of Iowa State, now a post-doctoral fellow at the U.S. Department of Energy's Lawrence Berkeley National Laboratory in California.

With this summer's drought and concerns about high prices for corn, van Leeuwen said there could be new interest in transferring the technology to the ethanol industry.

"It's now more important," van Leeuwen said, "to have better co-products of ethanol production."


Story Source:

The above story is based on materials provided by Iowa State University. Note: Materials may be edited for content and length.


Cite This Page:

Iowa State University. "Researchers feed pigs, chickens high-protein fungus grown on ethanol leftovers." ScienceDaily. ScienceDaily, 14 August 2012. <www.sciencedaily.com/releases/2012/08/120814213243.htm>.
Iowa State University. (2012, August 14). Researchers feed pigs, chickens high-protein fungus grown on ethanol leftovers. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/08/120814213243.htm
Iowa State University. "Researchers feed pigs, chickens high-protein fungus grown on ethanol leftovers." ScienceDaily. www.sciencedaily.com/releases/2012/08/120814213243.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins