Featured Research

from universities, journals, and other organizations

Evolution of mustards' spice: Plants developed chemical defense against bugs, specific to where they live

Date:
August 30, 2012
Source:
Duke University
Summary:
The tangy taste a mustard plant develops to discourage insect predators can be the difference between life and death for the plants. A new study has used this trait and its regional variations to conquer the difficult task of measuring the evolution of complex traits in a natural environment.

Field of mustard flowers in Napa Valley, California.
Credit: Karin Hildebrand Lau / Fotolia

There's a reason people don't put gobs of mustard on a hot dog. Mustard plants produce a spicy chemical intended to discourage insects from eating them lest they suffer a bad case of heartburn, and it has essentially the same effect on us.

Now, an interdisciplinary and international group of researchers based at Duke University has figured out why some of those wild mustard plants vary as much as they do in terms of that spice. The variation spells the difference between life and death for the plants in the mountainous Rockies where they live, a place where environmental conditions can change quite significantly over relatively short distances.

The study reported in the August 31 issue of the journal Science is one of very few to successfully follow the genes underlying variation of complex traits in a natural setting back to the evolutionary processes that influenced them.

"We were able to put this story together all the way from the plants in the dirt to the amino acids in the laboratory," said Tom Mitchell-Olds, a professor of biology and member of the Duke Institute for Genome Sciences & Policy. "That's where the challenge came in."

Mitchell-Olds' team studies the wild mustard Boechera stricta. Boechera is their organism of choice because its close relationship to the laboratory plant Arabidopsis offers them technical advantages and because the plants live in areas that have been untouched and unchanged for the last 3,000 years.

The researchers first identified a broad region in the plants' genome that was responsible for differences in their chemical defenses, vulnerability to insects and survival and reproduction in nature. "Technically, we had no idea what this would be," Mitchell-Olds said.

Ultimately, they traced those differences back to two amino acid changes in the enzyme controlling the plants' main spicy ingredient. With sophisticated biochemistry, the researchers discovered that this seemingly slight difference alters the spice-building pathway to produce a different defensive chemical -- different in a way that apparently matters quite a lot to insects. When plants carrying the version of that enzyme normally found in Colorado were planted in Montana, they struggled to survive as insects took their toll. When Montana plants were established in Colorado, they too got hammered by bugs.

While the findings may have some agricultural applications, Mitchell-Olds says he is more interested in understanding natural variation and the evolutionary forces that have shaped that variation over thousands of years.

"We've been able to go to places where the environment is intact, where these genotypes have been sitting around for 3,000 years in the place where they evolved in the first place, and do science," Mitchell-Olds said. "This variation we see reflects history. We finally have the tools to find the genes and to understand their influence on physiology and fitness, and that's pretty cool."


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. V. S. K. Prasad, B.-H. Song, C. Olson-Manning, J. T. Anderson, C.-R. Lee, M. E. Schranz, A. J. Windsor, M. J. Clauss, A. J. Manzaneda, I. Naqvi, M. Reichelt, J. Gershenzon, S. G. Rupasinghe, M. A. Schuler, T. Mitchell-Olds. A Gain-of-Function Polymorphism Controlling Complex Traits and Fitness in Nature. Science, 2012; 337 (6098): 1081 DOI: 10.1126/science.1221636

Cite This Page:

Duke University. "Evolution of mustards' spice: Plants developed chemical defense against bugs, specific to where they live." ScienceDaily. ScienceDaily, 30 August 2012. <www.sciencedaily.com/releases/2012/08/120830141335.htm>.
Duke University. (2012, August 30). Evolution of mustards' spice: Plants developed chemical defense against bugs, specific to where they live. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/08/120830141335.htm
Duke University. "Evolution of mustards' spice: Plants developed chemical defense against bugs, specific to where they live." ScienceDaily. www.sciencedaily.com/releases/2012/08/120830141335.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins