Featured Research

from universities, journals, and other organizations

Genetic mutation may have allowed early humans to migrate throughout Africa

Date:
September 19, 2012
Source:
Wake Forest Baptist Medical Center
Summary:
A genetic mutation that occurred thousands of years ago might be the answer to how early humans were able to move from central Africa and across the continent in what has been called "the great expansion," according to new research.

A genetic mutation that occurred thousands of years ago might be the answer to how early humans were able to move from central Africa and across the continent in what has been called "the great expansion," according to new research.
Credit: Sailorr / Fotolia

A genetic mutation that occurred thousands of years ago might be the answer to how early humans were able to move from central Africa and across the continent in what has been called "the great expansion," according to new research from Wake Forest Baptist Medical Center.

Related Articles


By analyzing genetic sequence variation patterns in different populations around the world, three teams of scientists from Wake Forest Baptist, Johns Hopkins University School of Medicine and the University of Washington School of Medicine, Seattle, demonstrated that a critical genetic variant arose in a key gene cluster on chromosome 11, known as the fatty acid desaturase cluster or FADS, more than 85,000 years ago. This variation would have allowed early humans to convert plant-based polyunsaturated fatty acids (PUFAs) to brain PUFAs necessary for increased brain size, complexity and function. The FADS cluster plays a critical role in determining how effectively medium-chain PUFAs found in plants are converted to the long-chain PUFAs found in the brain.

This research is published online today in PLOS ONE.

Archeological and genetic studies suggest that homo sapiens appeared approximately 180,000 years ago, but stayed in one location around bodies of water in central Africa for almost 100,000 years. Senior author Floyd H. "Ski" Chilton, Ph.D., professor of physiology and pharmacology and director of the Center for Botanical Lipids and Inflammatory Disease Prevention at Wake Forest Baptist, and others have hypothesized that this location was critical, in part, because early humans needed large amounts of the long-chain PUFA docosahexaenoic acid (DHA), which is found in shellfish and fish, to support complex brain function.

"This may have kept early humans tethered to the water in central Africa where there was a constant food source of DHA," Chilton said. "There has been considerable debate on how early humans were able to obtain sufficient DHA necessary to maintain brain size and complexity. It's amazing to think we may have uncovered the region of genetic variation that arose about the time that early humans moved out of this central region in what has been called the 'great expansion.'"

Once this trait arose, the study shows that it was under intense selective pressure and thus rapidly spread throughout the population of the entire African continent. "The power of genetics continually impresses me, and I find it remarkable that we can make inferences about things that happened tens of thousands of years ago by studying patterns of genetic variation that exist in contemporary populations," said Joshua M. Akey, Ph.D., lead scientist at the University of Washington.

This conversion meant that early humans didn't have to rely on just one food source, fish, for brain growth and development. This may have been particularly important because the genetic variant arose before organized hunting and fishing could have provided more reliable sources of long-chain PUFAs, Akey said.

To investigate the evolutionary forces shaping patterns of variation in the FADS gene cluster in geographically diverse populations, the researchers analyzed 1,092 individuals representing 15 different human populations that were sequenced as part of the 1000 Genome Project and 1,043 individuals from 52 populations from the Human Genome Diversity Panel database. They focused on the FADS cluster because they knew those genes code for the enzymatic steps in long-chain PUFA synthesis that are the least efficient.

Chilton said the findings were possible because of the collaboration of internationally recognized scientists from three distinct and diverse disciplines -- fatty acid biochemistry (Wake Forest Baptist), statistical genetics (Johns Hopkins) and population genetics (University of Washington). This new information builds on Chilton's 2011 research findings published in BMC Genetics that showed how people of African descent have a much higher frequency of the gene variants that convert plant-based medium-chain omega-6 PUFAs found in cooking oils and processed foods to long-chain PUFAs that cause inflammation. Compared to Caucasians, African Americans in the United States have much higher rates of hypertension, type 2 diabetes, stroke, coronary heart disease and certain types of cancer. "The current observation provides another important clue as to why diverse racial and ethnic populations likely respond differently to the modern western diet," Chilton said.

This research was supported by National Institutes of Health grants, P50 AT002782 and a Clinical and Translational Science Award grant to The Johns Hopkins Medical Institutions. Additional support was received from the Wake Forest Health Sciences Center for Public Health Genomics. Additional support came from the Mary Beryl Patch Turnbull Scholar Program and the MOSAIC initiative of Johns Hopkins University.

Chilton has a financial interest in and is a consultant for Gene Smart Health. His potential conflict of interest is being institutionally managed by Wake Forest Baptist and outside sponsors, as appropriate. No other authors have a conflict of interest.

First author is Rasika Mathias, Sc.D, assistant professor of medicine and epidemiology, Johns Hopkins; contributing authors include Hannah C. Ainsworth and Susan Sergeant, both of Wake Forest Baptist; Wenqing Fu, U of W; Dara G. Torgerson, University of California San Francisco; and Ingo Ruczinski and Kathleen C. Barnes of Johns Hopkins.


Story Source:

The above story is based on materials provided by Wake Forest Baptist Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rasika A. Mathias, Wenqing Fu, Joshua M. Akey, Hannah C. Ainsworth, Dara G. Torgerson, Ingo Ruczinski, Susan Sergeant, Kathleen C. Barnes, Floyd H. Chilton. Adaptive Evolution of the FADS Gene Cluster within Africa. PLoS ONE, 2012; 7 (9): e44926 DOI: 10.1371/journal.pone.0044926

Cite This Page:

Wake Forest Baptist Medical Center. "Genetic mutation may have allowed early humans to migrate throughout Africa." ScienceDaily. ScienceDaily, 19 September 2012. <www.sciencedaily.com/releases/2012/09/120919190100.htm>.
Wake Forest Baptist Medical Center. (2012, September 19). Genetic mutation may have allowed early humans to migrate throughout Africa. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2012/09/120919190100.htm
Wake Forest Baptist Medical Center. "Genetic mutation may have allowed early humans to migrate throughout Africa." ScienceDaily. www.sciencedaily.com/releases/2012/09/120919190100.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins