Featured Research

from universities, journals, and other organizations

Scientists uncover mechanism by which plants inherit epigenetic modifications

Date:
September 20, 2012
Source:
Cold Spring Harbor Laboratory
Summary:
Scientists have discovered that epigenetic modifications can be inherited in pollen and that this process is guided by small RNA. By this mechanism, acquired traits can be inherited over many hundreds of generations. This discovery will influence the ways people think about cross-breeding to select for desirable traits in crops such as those that have important agricultural and economic implications.

A circular “heat map” representation of a portion of the Arabidopsis plant genome focusing on chromosome 1 (Chr1). The color strength, from red (most) to blue/purple (least), represents the extent epigenetic modifications in different stages of plant germ cell development (INFL = inflorescence, MS = microspore, VN = vegetative nucleus, SC = sperm cell, EMB = embryo). The most epigenetically modified areas correspond to regions with the highest density of transposons (TEs). The black box outline highlights changes in a particular type of epigenetic modification during each stage of development.
Credit: Image courtesy of Cold Spring Harbor Laboratory

During embryonic development in humans and other mammals, sperm and egg cells are essentially wiped clean of chemical modifications to DNA called epigenetic marks. They are then held in reserve to await fertilization.

In flowering plants the scenario is dramatically different. Germ cells don't even appear until the post-embryonic period -- sometimes not until many years later. When they do appear, only some epigenetic marks are wiped away; some remain, carried over from prior generations -- although until now little was known about how or to what extent.

"What we did know," says Professor and HHMI-GBMF Investigator Rob Martienssen, Ph.D., of Cold Spring Harbor Laboratory (CSHL), "was that epigenetic inheritance -- the inheritance by offspring of chemical "tags" present in parental DNA that modify the expression of genes -- is much more widespread in plants than in animals."

In new research published online September 20 in the journal Cell, Martienssen and colleagues show that genome reprogramming through these epigenetic mechanisms is guided by small RNAs and is passed on to the next generation.

Some DNA is tagged with epigenetic marks

It has long been known that in plants, as the male germline pollen grains develop, they give rise to two sperm cells, and a structure called the vegetative nucleus, also known as the "nurse cell" because it provides energy and nourishment to the sperm cells.

The DNA in germ cells can exist in two dramatically different states: in one, it is very densely packed and essentially inaccessible to the cellular machinery that enables individual genes to be "expressed." In the other, in which the packing is much looser, genes can be expressed. In the latter state, because the genetic material is accessible, it is can also be modified by various chemical groups (two common ones are methyl and acetyl) which tend to attach to the DNA at specific locations.

These chemical tags are called epigenetic marks. The attachment of, for instance, a methyl group to a particular stretch of DNA containing a gene tends to prevent that gene from being accessed by the gene-expression machinery, and thus prevents the gene from being expressed.

Inherited methylation patterns are guided by small RNAs

Probing further into the set of modifications on the DNA in plant pollen grains, Martienssen and colleagues decided to look at the particular set of chemical marks called methyl groups. When they separated out pollen grains in different stages of development they found distinct patterns of the attachment of methyl groups to DNA.

They also noticed the corresponding accumulation of small RNAs, including two classes of so-called short-interfering RNAs (siRNAs) -- tiny RNA molecules, 21 or 24 nucleotides in length -- involved in silencing gene expression. These small siRNAs act as guides to where methylation will occur, silencing gene expression.

Previous work by the Martienssen lab and their collaborators, including a team of pollen specialists from the Instituto Gulbenkian de Ciencia in Lisbon, Portugal, has shown that these epigenetic mechanisms are important for keeping transposons in check. Also known as "jumping genes" for their ability to be expressed and then re-insert themselves at random into a different area of the genome, transposons are dangerous because they can cause damage to DNA and disrupt genetic function.

In the current study, Martienssen's team discovered that while in sperm, some areas of DNA containing transposons had "lost" methyl groups, and thus had the potential to be expressed, the same stretches of DNA were observed to be methylated in the seed embryo. This was associated with the accumulation of 21 nucleotide long siRNA in the mature pollen and 24 nucelotide long siRNA in the seed embryo. Martienssen speculates that the loss of methylation in the sperm and subsequent re-methylation during fertilization may reflect an ancient mechanism for transposon recognition and silencing.

A second important observation made by the team was of the loss of methylation in "nurse cells." Methylation at these same sites is retained in the associated sperm cells, and, too, is associated with accumulation of 24 nucleotide siRNA. This process results in areas of recurrent epigenetic marking that are pre-methylated in the germline sperm and carried on to the next generation.

"This is what, at least in part, enables plants to inherit acquired traits from prior generations -- something that we mammals can rarely do," Martienssen observes.

Being able to trace the inheritance of traits -- both wanted and unwanted -- in plants, and notably in agricultural crops, is important for farmers. Martienssen predicts that "defining inheritance through epigenetic modifications will influence the ways people think about cross-breeding to select for desired traits." Such traits as resistance to temperature variation in crops have important agricultural and economic implications.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joseph P. Calarco, Filipe Borges, Mark T.A. Donoghue, Frédéric Van Ex, Pauline E. Jullien, Telma Lopes, Rui Gardner, Frédéric Berger, José A. Feijó, Jörg D. Becker, Robert A. Martienssen. Reprogramming of DNA Methylation in Pollen Guides Epigenetic Inheritance via Small RNA. Cell, 2012; DOI: 10.1016/j.cell.2012.09.001

Cite This Page:

Cold Spring Harbor Laboratory. "Scientists uncover mechanism by which plants inherit epigenetic modifications." ScienceDaily. ScienceDaily, 20 September 2012. <www.sciencedaily.com/releases/2012/09/120920140150.htm>.
Cold Spring Harbor Laboratory. (2012, September 20). Scientists uncover mechanism by which plants inherit epigenetic modifications. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/09/120920140150.htm
Cold Spring Harbor Laboratory. "Scientists uncover mechanism by which plants inherit epigenetic modifications." ScienceDaily. www.sciencedaily.com/releases/2012/09/120920140150.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) — The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins