Featured Research

from universities, journals, and other organizations

Computational model identifies potential pathways to improve plant oil production

Date:
October 9, 2012
Source:
DOE/Brookhaven National Laboratory
Summary:
Using a computational model they designed to incorporate detailed information about plants' interconnected metabolic processes, scientists have identified key pathways that appear to "favor" the production of either oils or proteins. The research may point the way to new strategies to tip the balance and increase plant oil production.

Jordan Hay and Jörg Schwender are modeling plant metabolism to improve oil production.
Credit: Image courtesy of DOE/Brookhaven National Laboratory

Using a computational model they designed to incorporate detailed information about plants' interconnected metabolic processes, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have identified key pathways that appear to "favor" the production of either oils or proteins. The research, now published online in Plant Physiology, may point the way to new strategies to tip the balance and increase plant oil production.

The study focused on the metabolism of rapeseed, a crop grown primarily in temperate climates for the oil that accumulates in its seeds. Such plant oils are used worldwide for food, feed, and increasingly as a feedstock for the chemical industry and to produce biodiesel fuel.

"Increasing seed oil content is a major goal for the improvement of oil crops such as rapeseed," said Brookhaven biologist Jörg Schwender.

As a step toward that goal, Schwender and Brookhaven postdoctoral research associate Jordan Hay recently developed a detailed computational model incorporating 572 biochemical reactions that play a role in rapeseeds' central metabolism and/or seed oil production, as well as information on how those reactions are grouped together, are organized in subcellular compartments, and how they interact. They've now used the model to identify which metabolic pathways are likely to increase in activity -- and which have to decrease -- to convert a "low-oil" seed into a "high-oil" seed.

Such a switch would likely be a tradeoff between oil and protein production, Schwender explained, because with limited carbon and energy resources, "the plant would 'pay' for the increased cost of making more oil by reducing its investment into seed protein."

So far, efforts based on conventional plant breeding and genetics have had very limited success in changing the typical tradeoff of storage compounds in seeds.

"Behind the production of oil and protein in seeds is a complex network of hundreds of biochemical reactions, and it is hard to determine how this network is controlled and how it could be manipulated to change the tradeoff," Schwender said.

Schwender and Hay's computational model of 572 metabolic reactions turns the problem on its head to narrow the search. Instead of manipulating each pathway one by one to see which might tip the balance from protein toward oil, the model postulates the existence of seeds with different oil and protein content to see which of the many reactions are "responsive" to changes in the oil/protein tradeoff.

"This approach allowed us to narrow down the large list of enzyme reactions to the relatively few ones that might be good candidates to be manipulated in future experimental studies," Schwender said. "Our major goal is to computationally predict the least possible number of enzymes that have most control over the tradeoff between oil and protein production."

Of the 572 reactions included in the model, the scientists identified 149 reactions as "protein-responsive" and 116 as "oil-responsive."

"In addition, the model helps us evaluate how sensitive the reactions are in a quantitative way, so we can see which of these are the 'most sensitive' reactions," Schwender said. "This allows us to identify a relatively few possible targets for future genetic manipulation to tip the balance in favor of greater seed oil production."

Some of the reactions identified by the model confirm pathways pointed out in previous research as important for oil synthesis. "But some of the reactions identified by our model have not really been implied so far to be important in the oil/protein tradeoff," Schwender said, suggesting that this could be new ground for discovery.

"These simulation tools may therefore point the way to new strategies for re-designing bioenergy crops for improved production," he concluded.

This research was funded by the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Schwender, J. O. Hay. Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism. Plant Physiology, 2012; DOI: 10.1104/pp.112.203927

Cite This Page:

DOE/Brookhaven National Laboratory. "Computational model identifies potential pathways to improve plant oil production." ScienceDaily. ScienceDaily, 9 October 2012. <www.sciencedaily.com/releases/2012/10/121009112431.htm>.
DOE/Brookhaven National Laboratory. (2012, October 9). Computational model identifies potential pathways to improve plant oil production. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2012/10/121009112431.htm
DOE/Brookhaven National Laboratory. "Computational model identifies potential pathways to improve plant oil production." ScienceDaily. www.sciencedaily.com/releases/2012/10/121009112431.htm (accessed September 19, 2014).

Share This



More Plants & Animals News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) — Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) — The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) — The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) — Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins