Featured Research

from universities, journals, and other organizations

Assembly of nano-machines mimics human muscle

Date:
October 23, 2012
Source:
Centre national de la recherche scientifique (CNRS)
Summary:
For the first time, an assembly of thousands of nano-machines capable of producing a coordinated contraction movement extending up to around ten micrometers, like the movements of muscular fibers, has been synthesized by researchers in France.

Researchers have succeeded in synthesizing an assembly of thousands of nano-machines capable of producing a coordinated contraction movement extending up to around ten micrometers, like the movements of muscular fibers.
Credit: © microcozm / Fotolia

For the first time, an assembly of thousands of nano-machines capable of producing a coordinated contraction movement extending up to around ten micrometers, like the movements of muscular fibers, has been synthesized by a CNRS team from the Institut Charles Sadron.

This innovative work, headed by Nicolas Giuseppone, professor at the Université de Strasbourg, and involving researchers from the Laboratoire de Matière et Systèmes Complexes (CNRS/Université Paris Diderot), provides an experimental validation of a biomimetic approach that has been conceptualized for some years in the field of nanosciences. This discovery opens up perspectives for a multitude of applications in robotics, in nanotechnology for the storage of information, in the medical field for the synthesis of artificial muscles or in the design of other materials incorporating nano-machines (endowed with novel mechanical properties). This work has been published in the online version of the journal Angewandte Chemie International Edition.

Nature manufactures numerous machines known as "molecular." Highly complex assemblies of proteins, they are involved in essential functions of living beings such as the transport of ions, the synthesis of ATP (the "energy molecule"), and cell division. Our muscles are thus controlled by the coordinated movement of these thousands of protein nano-machines, which only function individually over distances of the order of a nanometer. However, when combined in their thousands, such nano-machines amplify this telescopic movement until they reach our scale and do so in a perfectly coordinated manner. Even though synthetic chemists have made dazzling progress over the last few years in the manufacture of artificial nano-machines (the mechanical properties of which are of increasing interest for research and industry), the coordination of several of these machines in space and in time hitherto remained an unresolved problem.

Not anymore: for the first time, Giuseppone's team has succeeded in synthesizing long polymer chains incorporating, via supramolecular bonds, thousands of nano-machines each capable of producing linear telescopic motion of around one nanometer. (A supramolecular bond is an interaction between different molecules that is not based on a traditional "covalent" chemical bond but instead on what are known as "weak interactions," thereby constituting complex molecular structures.) Under the influence of pH, their simultaneous movements allow the whole polymer chain to contract or extend over about 10 micrometers, thereby amplifying the movement by a factor of 10,000, along the same principles as those used by muscular tissues. Precise measurements of this experimental feat have been performed in collaboration with the team led by Eric Buhler, a physicist specialized in radiation scattering at the Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot).

These results, obtained using a biomimetic approach, could lead to numerous applications for the design of artificial muscles, micro-robots or the development of new materials incorporating nano-machines endowed with novel multi-scale mechanical properties.


Story Source:

The above story is based on materials provided by Centre national de la recherche scientifique (CNRS). Note: Materials may be edited for content and length.


Journal Reference:

  1. Guangyan Du, Emilie Moulin, Nicolas Jouault, Eric Buhler, Nicolas Giuseppone. Muscle-like Supramolecular Polymers: Integrated Motion from Thousands of Molecular Machines. Angewandte Chemie, 2012; DOI: 10.1002/ange.201206571

Cite This Page:

Centre national de la recherche scientifique (CNRS). "Assembly of nano-machines mimics human muscle." ScienceDaily. ScienceDaily, 23 October 2012. <www.sciencedaily.com/releases/2012/10/121023100940.htm>.
Centre national de la recherche scientifique (CNRS). (2012, October 23). Assembly of nano-machines mimics human muscle. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/10/121023100940.htm
Centre national de la recherche scientifique (CNRS). "Assembly of nano-machines mimics human muscle." ScienceDaily. www.sciencedaily.com/releases/2012/10/121023100940.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) — Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins