Featured Research

from universities, journals, and other organizations

Obstinate electrons 'ignore' assumptions and follow another path

Date:
October 24, 2012
Source:
University of Twente
Summary:
The nanowires, which have a cross-sectional area of no more than one square nanometer (a nanometer is one millionth of a millimeter), are attached to a substrate made of the semiconductor germanium. The virtually defect-free nanowires are spaced at intervals of just 1.6 nanometers. This forces electrons to adopt one-dimensional behavior.

Atomic force microscopy image (17 nanometres by 15 nanometres) showing rows of nanowires on a germanium surface.
Credit: Image courtesy of University of Twente

The nanowires, which have a cross-sectional area of no more than one square nanometre (a nanometre is one millionth of a millimetre), are attached to a substrate made of the semiconductor germanium. The virtually defect-free nanowires are spaced at intervals of just 1.6 nanometres. This forces electrons to adopt one-dimensional behaviour.

Related Articles


Parallel or perpendicular

In a recent paper in Nature Physics, German researchers stated that electrons show this behaviour in a direction parallel to the gold nanowires. Their research showed that the "motorway lanes" are located along the gold nanowire "ridges." Japanese researchers responded by stating that the electrons actually move in a direction that is perpendicular to the alignment of the gold nanowires.

Researchers from the Physics of Interfaces and Nanomaterials group, which is headed by Prof. Harold Zandvliet, decided to test these ideas, by creating a spatial image of the electrons' conduction path. So who was right? The Germans were right, to the extent that the electrons do move parallel to the nanowires. However, charge transport takes place in the "troughs" between the nanowires, not along the nanowires themselves.

As a result, the study sheds surprising new light on the behaviour of charge carriers at the atomic scale.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Heimbuch, M. Kuzmin, H. J. W. Zandvliet. Origin of the Au/Ge(001) metallic state. Nature Physics, 2012; 8 (10): 697 DOI: 10.1038/nphys2414

Cite This Page:

University of Twente. "Obstinate electrons 'ignore' assumptions and follow another path." ScienceDaily. ScienceDaily, 24 October 2012. <www.sciencedaily.com/releases/2012/10/121024050125.htm>.
University of Twente. (2012, October 24). Obstinate electrons 'ignore' assumptions and follow another path. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/10/121024050125.htm
University of Twente. "Obstinate electrons 'ignore' assumptions and follow another path." ScienceDaily. www.sciencedaily.com/releases/2012/10/121024050125.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins