Featured Research

from universities, journals, and other organizations

Scientists target bacterial transfer of resistance genes

Date:
October 24, 2012
Source:
University of Illinois at Urbana-Champaign
Summary:
The bacterium Streptococcus pneumoniae -- which can cause pneumonia, meningitis, bacteremia and sepsis -- likes to share its antibiotic-defeating weaponry with its neighbors. Individual cells can pass resistance genes to one another through a process called horizontal gene transfer, or by "transformation," the uptake of DNA from the environment. Now researchers report that they can interrupt the cascade of cellular events that allows S. pneumoniae to swap or suck up DNA.

Researchers report they have found a way to disrupt the spread of antibiotic-resistance genes among S. pneumoniae bacteria, which can contribute to pneumonia, meningitis and other dangerous ailments.
Credit: Centers for Disease Control

The bacterium Streptococcus pneumoniae -- which can cause pneumonia, meningitis, bacteremia and sepsis -- likes to share its antibiotic-defeating weaponry with its neighbors. Individual cells can pass resistance genes to one another through a process called horizontal gene transfer, or by "transformation," the uptake of DNA from the environment.

Related Articles


Now researchers report that they can interrupt the cascade of cellular events that allows S. pneumoniae to swap or suck up DNA. The new findings, reported in the journal PLoS ONE, advance the effort to develop a reliable method for shutting down the spread of drug resistance in bacteria.

"Within the last few decades, S. pneumoniae has developed resistance to several classes of antibiotics," said University of Illinois pathobiology professor Gee Lau, who led the study. "Importantly, it has been shown that antibiotic stress -- the use of antibiotics to treat an infection -- can actually induce the transfer of resistance genes among S. pneumoniae. Our approach inhibits resistance gene transfer in all strains of S. pneumoniae, and does so without increasing selective pressure and without increasing the likelihood that resistant strains will become dominant."

Lau and his colleagues focused on blocking a protein that, when it binds to a receptor in the bacterial cell membrane, spurs a series of events in the cell that makes the bacterium "competent" to receive new genetic material. The researchers hypothesized that interfering with this protein (called CSP) would hinder its ability to promote gene transfer.

In previous work published late last year in the journal PLoS Pathogens, Lau's team identified proteins that could be made in the lab that were structurally very similar to the CSP proteins. These artificial CSPs can dock with the membrane receptors, block the bacterial CSPs' access to the receptors and reduce bacterial competence, as well as reducing the infectious capacity of S. pneumoniae.

In the new study, the researchers fine-tuned the amino acid structure of more than a dozen artificial CSPs and tested how well they inhibited the S. pneumoniae CSPs. They also tested their ability (or, more desirably, their inability) to mimic the activity of CSPs in bacterial cells.

"The chemical properties of individual amino acids in a protein can greatly influence the protein's activity," Lau said.

The team identified several artificial CSPs that both inhibited the bacterial CSPs and reduced S. pneumoniae competence by more than 90 percent.

"This strategy will likely help us reduce the spread of antibiotic-resistance genes among S. pneumoniae and perhaps other species of streptococcus bacteria," Lau said.

The study team included researchers from Sun-Yat-Sen University in Guangdong, China. The National Institutes of Health and the University of Illinois Research Board Arnold O. Beckman Research Endowment partially supported this work.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chaohui Duan, Luchang Zhu, Ying Xu, Gee W. Lau. Saturated Alanine Scanning Mutagenesis of the Pneumococcus Competence Stimulating Peptide Identifies Analogs That Inhibit Genetic Transformation. PLoS ONE, 2012; 7 (9): e44710 DOI: 10.1371/journal.pone.0044710

Cite This Page:

University of Illinois at Urbana-Champaign. "Scientists target bacterial transfer of resistance genes." ScienceDaily. ScienceDaily, 24 October 2012. <www.sciencedaily.com/releases/2012/10/121024133454.htm>.
University of Illinois at Urbana-Champaign. (2012, October 24). Scientists target bacterial transfer of resistance genes. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2012/10/121024133454.htm
University of Illinois at Urbana-Champaign. "Scientists target bacterial transfer of resistance genes." ScienceDaily. www.sciencedaily.com/releases/2012/10/121024133454.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

AFP (Apr. 21, 2015) As money runs out at Tacugama Chimpanzee Sanctuary in Sierra Leone, around 85 chimps are facing homelessness. The centre closed when the Ebola epidemic was ravaging the country but now that closure is beginning to look permanent. Video provided by AFP
Powered by NewsLook.com
Blue Bell Recalls All Products

Blue Bell Recalls All Products

AP (Apr. 21, 2015) Blue Bell Creameries voluntary recalled for all of its products after two samples of chocolate chip cookie dough ice cream tested positive for listeria, a potentially deadly bacteria. Blue Bell&apos;s President and CEO issued a video statement. (April 21) Video provided by AP
Powered by NewsLook.com
Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins