Featured Research

from universities, journals, and other organizations

C’est difficile: Researchers develop cocktail of bacteria that eradicates Clostridium difficile infection in mice

Date:
October 25, 2012
Source:
Wellcome Trust Sanger Institute
Summary:
In a new study, researchers used mice to identify a combination six naturally occurring bacteria that eradicate a highly contagious form of Clostridium difficile, an infectious bacterium associated with many hospital deaths. Three of the six bacteria have not been described before. This work may have significant implications for future control and treatment approaches.

Proposed model for establishment of C. difficile-mediated dysbiosis and successful bacteriotherapy.
Credit: Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, et al. (2012) Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice. PLoS Pathog 8(10): e1002995. doi:10.1371/journal.ppat.1002995

In a new study out today, researchers used mice to identify a combination six naturally occurring bacteria that eradicate a highly contagious form of Clostridium difficile, an infectious bacterium associated with many hospital deaths. Three of the six bacteria have not been described before. This work may have significant implications for future control and treatment approaches.

The researchers found that this strain of C. difficile, known as O27, establishes a persistent, prolonged contagious period, known as supershedding that is very difficult to treat with antibiotics. These contagious 'supershedders' release highly resistant spores for a prolonged period that are very difficult to eradicate from the environment. Similar scenarios are likely in hospitals.

C. difficile can cause bloating, diarrhea, abdominal pain and is a contributing factor to over 2,000 deaths in the UK in 2011. It lives naturally in the body of some people where other bacteria in the gut suppress its numbers and prevent it from spreading. If a person has been treated with a broad-spectrum antibiotic such as clindamycin, our bodies' natural bacteria can be destroyed and the gut can become overrun by C. difficile. The aggressive strain of C. diff analysed in this study has been responsible for epidemics in Europe, North America and Australia.

"We treated mice infected with this persistent form of C. diff with a range of antibiotics but they consistently relapsed to a high level of shedding or contagiousness," says Dr Trevor Lawley, first author from the Wellcome Trust Sanger Institute. "We then attempted treating the mice using faecal transplantation, homogenized faeces from a healthy mouse. This quickly and effectively supressed the disease and supershedding state with no reoccurrence in the vast majority of cases."

"This epidemic caused by C. diff is refractory to antibiotic treatment but can be supressed by faecal transplantation, resolving symptoms of disease and contagiousness."

The team wanted to take this research one step further and isolate the precise bacteria that supressed C. diff. and restored microbial balance of the gut. They cultured a large number of bacteria naturally found in the gut of mice, all from one of four main groups of bacteria found in mammals. They tested many combinations of these bacteria, until they isolated a cocktail of six that worked best to suppress the infection.

"The mixture of six bacterial species effectively and reproducibly suppressed the C. difficile supershedder state in mice, restoring the healthy bacterial diversity of the gut," says Professor Harry Flint, senior author from the University of Aberdeen.

The team then sequenced the genomes of the six bacteria and compared their genetic family tree to more precisely define them. Based on this analysis, the team found that the mixture of six bacteria contained three that have been previously described and three novel species. This mix is genetically diverse and comes from all four main groups of bacteria found in mammals.

These results illustrate the effectiveness of displacing C. diff and the supershedder microbiota with a defined mix of bacteria, naturally found in the gut.

"Our results open the way to reduce the over-use of antibiotic treatment and harness the potential of naturally occurring microbial communities to treat C. difficile infection and transmission, and potentially other diseases associated with microbial imbalances," explains Professor Gordon Dougan, senior author from the Wellcome Trust Sanger Institute. "Faecal transplantation is viewed as an alternative treatment but it is not widely used because of the risk of introducing harmful pathogens as well as general patient aversion. This model encapsulates some of the features of faecal therapy and acts as a basis to develop standardized treatment mixture."


Story Source:

The above story is based on materials provided by Wellcome Trust Sanger Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Trevor D. Lawley, Simon Clare, Alan W. Walker, Mark D. Stares, Thomas R. Connor, Claire Raisen, David Goulding, Roland Rad, Fernanda Schreiber, Cordelia Brandt, Laura J. Deakin, Derek J. Pickard, Sylvia H. Duncan, Harry J. Flint, Taane G. Clark, Julian Parkhill, Gordon Dougan. Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice. PLoS Pathogens, 2012; 8 (10): e1002995 DOI: 10.1371/journal.ppat.1002995

Cite This Page:

Wellcome Trust Sanger Institute. "C’est difficile: Researchers develop cocktail of bacteria that eradicates Clostridium difficile infection in mice." ScienceDaily. ScienceDaily, 25 October 2012. <www.sciencedaily.com/releases/2012/10/121025174629.htm>.
Wellcome Trust Sanger Institute. (2012, October 25). C’est difficile: Researchers develop cocktail of bacteria that eradicates Clostridium difficile infection in mice. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/10/121025174629.htm
Wellcome Trust Sanger Institute. "C’est difficile: Researchers develop cocktail of bacteria that eradicates Clostridium difficile infection in mice." ScienceDaily. www.sciencedaily.com/releases/2012/10/121025174629.htm (accessed April 23, 2014).

Share This



More Plants & Animals News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Leopard Bites Man in India

Raw: Leopard Bites Man in India

AP (Apr. 22, 2014) A leopard caused panic in the city of Chandrapur on Monday when it sprung from the roof of a house and charged at rescue workers. (April 22) Video provided by AP
Powered by NewsLook.com
Iowa College Finds Beauty in Bulldogs

Iowa College Finds Beauty in Bulldogs

AP (Apr. 22, 2014) Drake University hosts 35th annual Beautiful Bulldog Contest. (April 21) Video provided by AP
Powered by NewsLook.com
805-Pound Shark Caught Off The Coast Of Florida

805-Pound Shark Caught Off The Coast Of Florida

Newsy (Apr. 22, 2014) One Florida fisherman caught a 805-pound shark off the coast of Florida earlier this month. Video provided by Newsy
Powered by NewsLook.com
Breakfast Foods Are Getting Pricier

Breakfast Foods Are Getting Pricier

AP (Apr. 21, 2014) Breakfast is now being served with a side of sticker shock. The cost of morning staples like bacon, coffee and orange juice is on the rise because of global supply problems. (April 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins