Featured Research

from universities, journals, and other organizations

How bacteria inactivate immune defenses

Date:
November 15, 2012
Source:
Imperial College London
Summary:
Scientists have identified a way in which Salmonella bacteria, which cause gastroenteritis and typhoid fever, counteract the defense mechanisms of human cells.

Salmonella bacteria (green) invade a red blood cell.
Credit: Professor David Holden, Imperial College London

A new study by researchers at Imperial College London has identified a way in which Salmonella bacteria, which cause gastroenteritis and typhoid fever, counteract the defence mechanisms of human cells.

One way in which our cells fight off infections is by engulfing the smaller bacterial cells and then attacking them with toxic enzymes contained in small packets called lysosomes.

PublishedNovember 15 in Science, the study has shown that Salmonella protects itself from this attack by depleting the supply of toxic enzymes.

Lysosomes constantly need to be replenished with fresh enzymes that are generated from a factory within our cells. These enzymes are carried from the factory along a dedicated transport pathway. After dropping off new enzymes at lysosomes, the transport carriers are sent back to the factory to pick up new enzymes.

In the study, led by Professor David Holden from the Department of Medicine and MRC Centre for Molecular Bacteriology and Infection, the group discovered that Salmonella has developed a specific way to interfere with the system that restocks the lysosomes with enzymes. They found that after bacteria have been engulfed by the cell, but before they are killed, Salmonella injects a protein that prevents the cell from recycling the transport carriers between the factory and the lysosome.

This means that Salmonella effectively cuts off the supply line of the enzymes that would otherwise kill it. As a result, the enzymes get re-routed out of the cell and the lysosomes lose their potency. Salmonella is then able to exploit the disarmed lysosomes by feeding off the nutrients they contain.

Professor Holden said: "This seems to be a very effective way for these harmful bacteria to interfere with our cell's defence mechanisms, and then exploit the defective lysosomes to their own benefit."

"Our challenge now is to understand in greater detail how the injected Salmonella protein works at the molecular level, and -- potentially -- to exploit our findings to develop more effective vaccines. This is especially important since many Salmonella strains are now resistant to antibiotics."

Different strains of Salmonella cause gastroenteritis, blood infections and typhoid fever, which together are responsible for millions of human illnesses and deaths each year.

The research project was funded with grants from the Medical Research Council and the Wellcome Trust.


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. McGourty, T. L. Thurston, S. A. Matthews, L. Pinaud, L. J. Mota, D. W. Holden. Salmonella Inhibits Retrograde Trafficking of Mannose-6-Phosphate Receptors and Lysosome Function. Science, 2012; 338 (6109): 963 DOI: 10.1126/science.1227037

Cite This Page:

Imperial College London. "How bacteria inactivate immune defenses." ScienceDaily. ScienceDaily, 15 November 2012. <www.sciencedaily.com/releases/2012/11/121115141510.htm>.
Imperial College London. (2012, November 15). How bacteria inactivate immune defenses. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/11/121115141510.htm
Imperial College London. "How bacteria inactivate immune defenses." ScienceDaily. www.sciencedaily.com/releases/2012/11/121115141510.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins