Featured Research

from universities, journals, and other organizations

Ultra-short laser pulses control chemical processes

Date:
December 12, 2012
Source:
Vienna University of Technology
Summary:
Specially shaped laser pulses can be used to change the state of electrons in a molecule. This process only takes several attoseconds -- but it can initiate another, much slower process: The splitting of the molecule into two parts. Laser pulses can be used to initiate or suppress chemical reactions in a controlled way.

A short laser pulse hits a molecule (here: Butadiene), which splits into two parts.
Credit: Image courtesy of Vienna University of Technology

Chemical reactions occur so quickly that it is completely impossible to observe their progress or to control them using conventional methods. However, new developments in electrical engineering and quantum technology enable us to achieve a more exact understanding and improved control of the behaviour of atoms and molecules. At the TU Vienna, scientists have succeeded in influencing the splitting of large molecules with up to ten atoms using ultra-short laser pulses.

The flash of light which splits molecules Splitting a molecule is an example of an elemental chemical reaction. The splitting of molecular bonds with a laser pulse is relatively simple. It is much more difficult, however, to influence the splitting of a specific bond in a controlled manner, i.e. to initiate it in a controlled manner or to suppress it. In order to achieve this, the complex processes must be altered at an atomic level. This is carried out at the Institute for Photonics at the TU Vienna using specially-shaped laser pulses, with a duration of only a few femtoseconds. One femtosecond (10-15 seconds) is one millionth of a billionth of a second.

Fast electrons, slow atomic nuclei

One carbon atom has a mass around 22,000 times greater than an electron. It is therefore also relatively inert and cannot be moved easily from its position. A laser pulse can therefore change the movement of the small, light electrons much more rapidly than that of the atomic nuclei: One electron can be extracted from the molecule, then reversed using the laser pulse field and collided again with the molecule. During this collision, the electron can subsequently extract a second electron from the molecule. A doubly charged molecule remains, which can then split into two singly charged fragments under certain circumstances.

"Usually, it takes several femtoseconds for the atomic nuclei to reach a sufficient distance from one another and the molecule to split into two pieces," explains Markus Kitzler from the Institute of Photonics at the TU Vienna. The collision of the electron with the molecule only lasts several hundred attoseconds (10-18 seconds). "We therefore have to deal with two separate timescales," explains Kitzler. "Our specially shaped ultra-short laser pulses affect rapidly-moving electrons. The fact that the state of the electrons is changed by the collision also sets the large, slow atomic nuclei into motion." Using this technique, the TU research team have for the first time been able to show that specific elemental chemical reactions using various hydrocarbon molecules can also be initiated or suppressed in a controlled manner, if the movement of the atomic nuclei are influenced indirectly by the much quicker electrons. The exact shape of the laser pulse is crucial in this process.

The role of electron movement for chemistry

In order to be able to interpret the experimental data correctly and understand what actually happens during these incredibly rapid processes at atomic and electronic level, theoretical calculations and computer simulations are required. This has also been carried out at the TU Vienna -- at the Institute for Theoretical Physics, which collaborates with the Institute for Photonics on attosecond projects. Using this method, we can do more than simply observe whether and how a molecule splits. "The experiments and simulations show how the sequence of chemical processes can also be affected in a targeted manner using precise control of the laser pulse," explains Katharina Doblhoff-Dier from the Institute of Theoretical Physics.


Story Source:

The above story is based on materials provided by Vienna University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xinhua Xie, Katharina Doblhoff-Dier, Stefan Roither, Markus Schφffler, Daniil Kartashov, Huailiang Xu, Tim Rathje, Gerhard Paulus, Andrius Baltuška, Stefanie Grδfe, Markus Kitzler. Attosecond-Recollision-Controlled Selective Fragmentation of Polyatomic Molecules. Physical Review Letters, 2012; 109 (24) DOI: 10.1103/PhysRevLett.109.243001

Cite This Page:

Vienna University of Technology. "Ultra-short laser pulses control chemical processes." ScienceDaily. ScienceDaily, 12 December 2012. <www.sciencedaily.com/releases/2012/12/121212130848.htm>.
Vienna University of Technology. (2012, December 12). Ultra-short laser pulses control chemical processes. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/12/121212130848.htm
Vienna University of Technology. "Ultra-short laser pulses control chemical processes." ScienceDaily. www.sciencedaily.com/releases/2012/12/121212130848.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) — Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins