Featured Research

from universities, journals, and other organizations

What mechanism generates our fingers and toes? Genetic studies confirm a mathematical model

Date:
December 14, 2012
Source:
Institut de recherches cliniques de Montreal
Summary:
Researchers have identified the mechanism responsible for generating our fingers and toes, and revealed the importance of gene regulation in the transition of fins to limbs during evolution.

Researchers have identified the mechanism responsible for generating our fingers and toes, and revealed the importance of gene regulation in the transition of fins to limbs during evolution.
Credit: Pavel Mastepanov / Fotolia

Researchers have identified the mechanism responsible for generating our fingers and toes, and revealed the importance of gene regulation in the transition of fins to limbs during evolution.

Dr. Marie Kmita and her research team at the IRCM contributed to a multidisciplinary research project. Their scientific breakthrough is published today in the journal Science.

By combining genetic studies with mathematical modeling, the scientists provided experimental evidence supporting a theoretical model for pattern formation known as the Turing mechanism. In 1952, mathematician Alan Turing proposed mathematical equations for pattern formation, which describes how two uniformly-distributed substances, an activator and a repressor, trigger the formation of complex shapes and structures from initially-equivalent cells.

"The Turing model for pattern formation has long remained under debate, mostly due to the lack of experimental data supporting it," explains Dr. Rushikesh Sheth, postdoctoral fellow in Dr. Kmita's laboratory and co-first author of the study. "By studying the role of Hox genes during limb development, we were able to show, for the first time, that the patterning process that generates our fingers and toes relies on a Turing-like mechanism."

In humans, as in other mammals, the embryo's development is controlled, in part, by "architect" genes known as Hox genes. These genes are essential to the proper positioning of the body's architecture, and define the nature and function of cells that form organs and skeletal elements.

"Our genetic study suggested that Hox genes act as modulators of a Turing-like mechanism, which was further supported by mathematical tests performed by our collaborators, Dr. James Sharpe and his team," adds Dr. Marie Kmita, Director of the Genetics and Development research unit at the IRCM. "Moreover, we showed that drastically reducing the dose of Hox genes in mice transforms fingers into structures reminiscent of the extremities of fish fins. These findings further support the key role of Hox genes in the transition of fins to limbs during evolution, one of the most important anatomical innovations associated with the transition from aquatic to terrestrial life."

The study published in Science was a collaborative project between the teams supervised by Drs. Marie Kmita (IRCM), James Sharpe (CRG Barcelona, Spain) and Maria A. Ros (University of Cantabria, Spain). The research conducted at the IRCM was funded by the Canadian Institutes of Health Research and the Canada Research Chairs Program. The article's second first author Is Luciano Marcon from the European Molecular Biology Laboratory (EMBL) and the Pompeu Fabra University in Spain.


Story Source:

The above story is based on materials provided by Institut de recherches cliniques de Montreal. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Sheth, L. Marcon, M. F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, M. A. Ros. Hox Genes Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism. Science, 2012; 338 (6113): 1476 DOI: 10.1126/science.1226804

Cite This Page:

Institut de recherches cliniques de Montreal. "What mechanism generates our fingers and toes? Genetic studies confirm a mathematical model." ScienceDaily. ScienceDaily, 14 December 2012. <www.sciencedaily.com/releases/2012/12/121214112652.htm>.
Institut de recherches cliniques de Montreal. (2012, December 14). What mechanism generates our fingers and toes? Genetic studies confirm a mathematical model. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/12/121214112652.htm
Institut de recherches cliniques de Montreal. "What mechanism generates our fingers and toes? Genetic studies confirm a mathematical model." ScienceDaily. www.sciencedaily.com/releases/2012/12/121214112652.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins