Featured Research

from universities, journals, and other organizations

A giant puzzle with billions of pieces

Date:
December 21, 2012
Source:
Universitaet Bielefeld
Summary:
Scientists have deciphered genetic information on microbes in biogas plants. Day after day, legions of microorganisms work to produce energy from waste in biogas plants.

Stained, they fluoresce under the microscope: a wide variety of microbes can be seen in a sample taken from a biogas plant. Researchers at Bielefeld University want to find out which ones do their job best.
Credit: Karsten Niehaus

Day after day, legions of microorganisms work to produce energy from waste in biogas plants. Researchers from Bielefeld University's Center for Biotechnology (CeBiTec) are taking a close look to find out which microbes do the best job. They are analysing the entire genetic information of the microbial communities in selected biogas plants up and down Germany. From the beginning of 2013, the Californian Joint Genome Institute will undertake the sequencing required. The biocomputational analysis will be performed at CeBiTec. Not an easy task, since the data will be supplied in billions of fragments stemming in turn from hundreds of organisms. Piecing together this huge jigsaw puzzle will be painstaking work.

In Germany, there are more than 7,000 biogas plants which can supply over six million households with power. The plants are filled mostly with plant biomass like maize silage but also with agricultural waste materials like liquid manure and chicken manure. One of the key research questions is how the production of biogas can be optimised. For this reason, Bielefeld scientists Dr Alexander Sczyrba, Dr Andreas Schlüter, Dr Alexander Goesmann, Professor Dr Jens Stoye und Professor Dr Alfred Pühler want to know what microbes are responsible for the decomposition of biomass -- and which of them do it best. "We are interested in discovering the microbiology that is really behind the processes going on in a biogas plant; what micro-organisms play which role at which stage," explains Andreas Schlüter, whose research at CeBiTec is in the field of biogas production.

First genome deciphered

The researchers' work has already borne its first fruit. "At CeBiTec, we have managed to deci-pher the complete genome sequence of Methanoculleus bourgensis, a methane producer," reports Professor Pühler. By doing so, Bielefeld has sequenced the first genome for a methane-producing archaeon from a biogas plant -- a single-celled primordial bacterium which plays an important role in certain biogas plants. Now, the researchers want to go even further.

Putting the puzzle together

The project is part of the Community Sequencing Program, a public sequencing programme financed at the Joint Genome Institute by the US Department of Energy. While previous biogas studies have concentrated primarily on certain marker genes, now the entire genetic information of the microorganisms is to be studied. The American institute will produce more than one terabyte of sequence data for this, which is equivalent in volume to approximately 300 human genomes. This data will be supplied in a countless number of fragments, however, since even the most modern technology is not capable of reading all at once the millions of bases of which a microbial DNA molecule consists. Instead, the sequencing technologies supply vast quantities of overlapping sections of about 150 bases.

The DNA sequences will then be returned to Bielefeld in billions of fragments, which is where Alexander Sczyrba's Computa-tional Metagenomics team comes into play. They develop bioinformatic procedures for the reconstruction of genome sequences. Their task is to compare the data, recognise the overlaps and use them to reassemble the base sequence. "We are trying to complete a puzzle made up of billions of pieces, which also includes hundreds of different puzzles all mixed up," explains Sczyrba.

Single-cell genomics promises new insights

Quite incidentally, the Bielefeld researchers will be breaking new ground in genomics. An estimated 99 per cent of all microorganisms cannot be cultivated in the laboratory. A brand new technology, single-cell genomics, is to provide insights here by determining the genome sequence from single microbial cells. Knowledge of the identity and functions of hitherto completely unknown microorganisms is expected to be gained. During the joint project, the Joint Genome Institute will sequence approximately 100 single-cell genomes.

The researchers have scheduled roughly two years for their project, in which also Bielefeld doctoral students of the Graduate Cluster in Industrial Biotechnology (CLIB) are involved. At the end, they hope to have discovered the optimal microbial community for biogas plants -- and thus be in a position to make this process of generating energy even more efficient.

Background

Biogas plants produce methane through the fermentation of plant biomass, which can be used to generate power and heat. The decomposition of plant biomass and the production of biogas in agricultural biogas plants are brought about by microbes. This process, which is similar to what goes on in the digestive tract of cattle, has a neutral carbon dioxide balance and does not therefore contribute to global warming. Unlike other renewable energies, for example weather-dependent power sources like wind and solar, methane can be produced constantly and stored. This allows it to be converted into power or heat as required.


Story Source:

The above story is based on materials provided by Universitaet Bielefeld. Note: Materials may be edited for content and length.


Cite This Page:

Universitaet Bielefeld. "A giant puzzle with billions of pieces." ScienceDaily. ScienceDaily, 21 December 2012. <www.sciencedaily.com/releases/2012/12/121221081613.htm>.
Universitaet Bielefeld. (2012, December 21). A giant puzzle with billions of pieces. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2012/12/121221081613.htm
Universitaet Bielefeld. "A giant puzzle with billions of pieces." ScienceDaily. www.sciencedaily.com/releases/2012/12/121221081613.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) — A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) — Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins