Featured Research

from universities, journals, and other organizations

How do songbirds sing? In 3-D!

Date:
January 8, 2013
Source:
BioMed Central Limited
Summary:
Like humans, songbirds learn their vocalizations by imitation. Since their songs are used for finding a mate and retaining territories, birdsong is very important for reproductive success. High-field magnetic resonance imaging and micro-computed tomography have been used to construct stunning high resolution, 3-D, images, as well as a data set "morphome" of the zebra finch (Taeniopygia guttata) vocal organ, the syrinx.

High-field magnetic resonance imaging and micro-computed tomography have been used to construct stunning high resolution, 3D, images, as well as a data set "morphome" of the zebra finch (Taeniopygia guttata) vocal organ, the syrinx.
Credit: Daniel N Düring, Alexander Ziegler, Christopher K Thompson, Andreas Ziegler, Cornelius Faber, Johannes Müller, Constance Scharff and Coen P H Elemans.

The question 'How do songbirds sing?' is addressed in a study published in BioMed Central's open access journal BMC Biology. High-field magnetic resonance imaging and micro-computed tomography have been used to construct stunning high resolution, 3D, images, as well as a data set "morphome" of the zebra finch (Taeniopygia guttata) vocal organ, the syrinx.

Related Articles


Like humans, songbirds learn their vocalizations by imitation. Since their songs are used for finding a mate and retaining territories, birdsong is very important for reproductive success.

The syrinx, located at the point where the trachea splits in two to send air to the lungs, is unique to birds and performs the same function as vocal cords in humans. Birds can have such a complete control over the syrinx, with sub-millisecond precision, that in some cases they are even able to mimic human speech.

Despite great inroads in uncovering the neural control of birdsong, the anatomy of the complex physical structures that generate sound have been less well understood.

The multinational team has generated interactive 3D PDF models of the syringeal skeleton, soft tissues, cartilaginous pads, and muscles affecting sound production. These models show in detail the delicate balance between strength, and lightness of bones and cartilage required to support and alter the vibrating membranes of the syrinx at superfast speeds.

Dr Coen Elemans, from the University of Southern Denmark, who led this study, explained, "This study provides the basis to analyze the micromechanics, and exact neural and muscular control of the syrinx. For example, we describe a cartilaginous structure which may allow the zebra finch to precisely control its songs by uncoupling sound frequency and volume." In addition, the researchers found a previously unrecognized Y-shaped structure on the sternum which corresponds to the shape of the syrinx and could help stabilize sound production.


Story Source:

The above story is based on materials provided by BioMed Central Limited. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel N Düring, Alexander Ziegler, Christopher K Thompson, Andreas Ziegler, Cornelius Faber, Johannes Müller, Constance Scharff and Coen P H Elemans. The songbird syrinx morphome: a three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ. BMC Biology, 2013; (in press) [link]

Cite This Page:

BioMed Central Limited. "How do songbirds sing? In 3-D!." ScienceDaily. ScienceDaily, 8 January 2013. <www.sciencedaily.com/releases/2013/01/130107190756.htm>.
BioMed Central Limited. (2013, January 8). How do songbirds sing? In 3-D!. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/01/130107190756.htm
BioMed Central Limited. "How do songbirds sing? In 3-D!." ScienceDaily. www.sciencedaily.com/releases/2013/01/130107190756.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins