Featured Research

from universities, journals, and other organizations

Bugs need symbiotic bacteria to exploit plant seeds: Mid-gut microbes help insects in processing their food

Date:
January 9, 2013
Source:
Max-Planck-Gesellschaft
Summary:
Aggregations of the red and black coloured firebugs are ubiquitous under linden trees in Central Europe, where the bugs can reach astounding population densities. While these insects have no impact on humans, their African, Asian, and American relatives, the cotton stainers, are serious agricultural pests of cotton and other Malvaceous plants. Researchers recently discovered that these bugs need bacterial symbionts to survive on cotton seeds as their sole food source. By using high-throughput sequencing technologies, they found out that firebugs and cotton stainers share a characteristic bacterial community that colonizes a specific region of their mid-gut.

The African cotton stainer (Dysdercus fasciatus) cultivates bacterial symbionts in its mid-gut that are necessary for growth and reproduction.
Credit: MPI for Chemical Ecology/Kaltenpoth

Aggregations of the red and black coloured firebugs are ubiquitous under linden trees in Central Europe, where the bugs can reach astounding population densities. While these insects have no impact on humans, their African, Asian, and American relatives, the cotton stainers, are serious agricultural pests of cotton and other Malvaceous plants. Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, recently discovered that these bugs need bacterial symbionts to survive on cotton seeds as their sole food source.

By using high-throughput sequencing technologies, they found out that firebugs and cotton stainers share a characteristic bacterial community that colonizes a specific region of their mid-gut. Removal of the symbionts or reciprocal exchange of bacteria between firebugs and cotton stainers led to high mortality and low mating success, demonstrating the importance of the bacterial helpers for growth and reproduction. Thus, symbiotic bacteria constitute a key factor not only for the ecological success of firebugs but also for the pest status of cotton strainers.

With more than 80,000 described species, the true bugs represent one of the five megadiverse insect orders on earth. Many species are serious agricultural pests that are responsible for significant losses in crop production. Among these are cotton stainers, bugs of the family Pyrrhocoridae that damage cotton by feeding on the seed bolls and leaving indelible stains in the harvested crop. While previous research on sap-sucking insects demonstrated that they rely on microbial symbionts for nutrition, it remained unknown how cotton stainers and other seed-feeding bugs exploit Malvaceous plant seeds that are rich in toxic secondary metabolites, but poor in some essential nutrients.

Scientists of the Insect Symbiosis Research Group at the Max Planck Institute for Chemical Ecology set out to address this question and elucidate the possible role of symbiotic bacteria in the nutrition of firebugs and cotton stainers. By using high-throughput sequencing technologies and deciphering almost 300,000 copies of bacterial 16S rRNA genes, they discovered that the bugs cultivate a characteristic community of three to six bacterial symbionts in a specific mid-gut region. "The symbionts are transferred to the eggs by female bugs, and the hatchlings later take them up by probing the egg surface," explains Sailendharan Sudakaran, PhD student in the Insect Symbiosis Group. "This guarantees that the bugs maintain the symbionts throughout their entire life and pass them on to the next generation." Bugs from different localities and even across different species showed very similar microbial communities, indicating that the bugs have been associated with their symbionts over millions of years.

To find out whether the bacterial symbionts help the bugs to survive on the plant seeds as their sole food source, the researchers performed a simple yet elegant experiment: They dipped bug eggs into bleach and ethanol and thereby killed the microbial community on the surface without harming the developing egg itself. Some of the eggs were then re-infected with a mixture of bacteria from an adult bug's gut, while others remained symbiont-free. Interestingly, the symbiont-free individuals showed markedly higher mortality, needed longer to develop into adults, and produced much fewer offspring than bugs with their native symbionts. "Symbiont-free bugs showed clear signs of malnutrition, although they were fed on the same plant seeds as their symbiont-bearing counterparts. This can only be explained by an important contribution of the bacteria towards host nutrition," says Hassan Salem, another PhD student in the group. Surprisingly, exchanging bacterial communities between firebugs and cotton stainers also resulted in reduced fitness of both species, indicating that -- despite their similarity -- the symbioses are highly specific.

The next important steps will be to find out whether the bacterial symbionts provide essential nutrients to their hosts that are lacking in the seed diet, or whether they help by detoxifying the noxious defensive chemicals of the plant. "Firebugs and cotton stainers are ideal model systems to address fundamental questions in insect symbiosis, because we can manipulate and exchange their microbial communities and then measure the fitness of the hosts," explains Martin Kaltenpoth, head of the Max Planck Research Group Insect Symbiosis. "Detailed knowledge on how insects interact with microbial symbionts is essential for an understanding of insect physiology, ecology, and evolution." In the case of agricultural pest insects like the cotton stainers, this knowledge may also provide novel leads for biological control.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal References:

  1. Sailendharan Sudakaran, Hassan Salem, Christian Kost, Martin Kaltenpoth. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Molecular Ecology, 2012; 21 (24): 6134 DOI: 10.1111/mec.12027
  2. Hassan Salem, Elisabeth Kreutzer, Sailendharan Sudakaran, Martin Kaltenpoth. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environmental Microbiology, 2012; DOI: 10.1111/1462-2920.12001

Cite This Page:

Max-Planck-Gesellschaft. "Bugs need symbiotic bacteria to exploit plant seeds: Mid-gut microbes help insects in processing their food." ScienceDaily. ScienceDaily, 9 January 2013. <www.sciencedaily.com/releases/2013/01/130109081155.htm>.
Max-Planck-Gesellschaft. (2013, January 9). Bugs need symbiotic bacteria to exploit plant seeds: Mid-gut microbes help insects in processing their food. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/01/130109081155.htm
Max-Planck-Gesellschaft. "Bugs need symbiotic bacteria to exploit plant seeds: Mid-gut microbes help insects in processing their food." ScienceDaily. www.sciencedaily.com/releases/2013/01/130109081155.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins