Featured Research

from universities, journals, and other organizations

Genome of diamondback moth provides new clues for sustainable pest management

Date:
January 13, 2013
Source:
BGI Shenzhen
Summary:
Chinese scientists have decoded the first genome of diamondback moth, providing new clues for sustainable pest management.

An international research consortium, led by Fujian Agriculture, Forestry University (FAFU) and BGI, has completed the first genome sequence of the diamondback moth (DBM), the most destructive pest of brassica crops. This work provides wider insights into insect adaptation to host plant and opens new ways for more sustainable pest management.

Related Articles


The latest study was published online January 13 in Nature Genetics.

The diamondback moth (Plutella xylostella) preferentially feeds on economically important food crops such as rapeseed, cauliflower and cabbage. It has developed resistance to against more than 50 insecticides, including DDT, Bt toxins, among others, making the use of chemicals as a control measurement become ineffective. It is estimated that the total cost associated with the damage and management is US$4-5 billion per year worldwide.

"The completed genome sequencing of DBM will lay a solid foundation for tracking the evolutionary mechanisms of how an insect evolves to become a successful herbivore that can defense many insecticides." said Professor Minsheng You, Vice President of FAFU and leader of the research team. "The work here also provides an invaluable resource for scientists to better understand the reasons why DBM is such a serious pest and how new strategies can be developed to control insect pests."

In this study, researchers sequenced the genome of DBM by whole genome shotgun (WGS) and fosmid clones technologies, yielding ~343 Mb draft genome with 18,071 predicted protein-coding genes. Compared with other sequenced insect species, they found that the diamondback moth possesses a relatively larger set of genes and a moderate number of gene families, suggesting the expansion of certain gene families. Additionally, the genome-based phylogeny demonstrated that DBM was a basal lepidopteran species, which is well supported by its modal karyotype. Based on the genomic data generated from ~1,000 male pupae, researchers identified the genome-wide level of polymorphism within the sequenced DBM strain (Fuzhou-S), which may lay the genetic bases for DBM in adapting to various environmental challenges. They investigated a set of genes preferentially expressed at the larval stage that contribute to odorant chemoreception, food digestion and metabolic detoxification. Interestingly, they found that the co-expression of sulfatase modifying factor 1 (SUMF1) and glucosinolate sulfatase (GSS) genes may be crucial for DBM to become a successful cruciferous herbivore.

Insecticide tolerance or resistance may have contribution to the option of detoxification pathway in insect herbivores. In this study, researchers found DBM has a larger set of insecticide resistance-related genes than silkworm (B.mori) that had little exposure to insecticide over 5,000 years of domestication. They identified in DBM obvious gene duplications of four gene families that participated in xenobiotic detoxification in insects, including ATP-binding cassette (ABC) transporter families, the P450 monooxygenases (P450s), glutathione S-transferases (GSTs) and carboxylesterase (COEs). Notably, the further analysis highlighted the potential role of ABC transporters in detoxification.

The clever evolutionary trick has allowed DBM to become such a serious pest, and it may play an important role in the development of its ability to detoxify a wide range of chemicals. "Remarkably, it appears that the very genetic adaptations that allow DBM to detoxify the chemicals in its food plants, and also allow it to develop immunity to the insecticides used against it." commented by Professor Geoff Gurr of Charles Sturt University, Australia, one of the international collaborators.

Professor Jun Wang, Executive Director of BGI, said, "The availability of a reference genome for a species is extremely important in the deeper understanding of its biology and evolution. We are pleased to be part of this consortium and have the first publicly accessible database of diamondback moth genome. I expect we could translate our achievements into real actions for sustainable pest management in the near future."

The complete genome sequence of diamondback moth is publicly available via visit http://www.iae.fafu.edu.cn/DBM.


Story Source:

The above story is based on materials provided by BGI Shenzhen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Minsheng You, Zhen Yue, Weiyi He, Xinhua Yang, Guang Yang, Miao Xie, Dongliang Zhan, Simon W Baxter, Liette Vasseur, Geoff M Gurr, Carl J Douglas, Jianlin Bai, Ping Wang, Kai Cui, Shiguo Huang, Xianchun Li, Qing Zhou, Zhangyan Wu, Qilin Chen, Chunhui Liu, Bo Wang, Xiaojing Li, Xiufeng Xu, Changxin Lu, Min Hu, John W Davey, Sandy M Smith, Mingshun Chen, Xiaofeng Xia, Weiqi Tang, Fushi Ke, Dandan Zheng, Yulan Hu, Fengqin Song, Yanchun You, Xiaoli Ma, Lu Peng, Yunkai Zheng, Yong Liang, Yaqiong Chen, Liying Yu, Younan Zhang, Yuanyuan Liu, Guoqing Li, Lin Fang, Jingxiang Li, Xin Zhou, Yadan Luo, Caiyun Gou, Junyi Wang, Jian Wang, Huanming Yang, Jun Wang. A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 2013; DOI: 10.1038/ng.2524

Cite This Page:

BGI Shenzhen. "Genome of diamondback moth provides new clues for sustainable pest management." ScienceDaily. ScienceDaily, 13 January 2013. <www.sciencedaily.com/releases/2013/01/130113144921.htm>.
BGI Shenzhen. (2013, January 13). Genome of diamondback moth provides new clues for sustainable pest management. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/01/130113144921.htm
BGI Shenzhen. "Genome of diamondback moth provides new clues for sustainable pest management." ScienceDaily. www.sciencedaily.com/releases/2013/01/130113144921.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins