Featured Research

from universities, journals, and other organizations

Genome of diamondback moth provides new clues for sustainable pest management

Date:
January 13, 2013
Source:
BGI Shenzhen
Summary:
Chinese scientists have decoded the first genome of diamondback moth, providing new clues for sustainable pest management.

An international research consortium, led by Fujian Agriculture, Forestry University (FAFU) and BGI, has completed the first genome sequence of the diamondback moth (DBM), the most destructive pest of brassica crops. This work provides wider insights into insect adaptation to host plant and opens new ways for more sustainable pest management.

The latest study was published online January 13 in Nature Genetics.

The diamondback moth (Plutella xylostella) preferentially feeds on economically important food crops such as rapeseed, cauliflower and cabbage. It has developed resistance to against more than 50 insecticides, including DDT, Bt toxins, among others, making the use of chemicals as a control measurement become ineffective. It is estimated that the total cost associated with the damage and management is US$4-5 billion per year worldwide.

"The completed genome sequencing of DBM will lay a solid foundation for tracking the evolutionary mechanisms of how an insect evolves to become a successful herbivore that can defense many insecticides." said Professor Minsheng You, Vice President of FAFU and leader of the research team. "The work here also provides an invaluable resource for scientists to better understand the reasons why DBM is such a serious pest and how new strategies can be developed to control insect pests."

In this study, researchers sequenced the genome of DBM by whole genome shotgun (WGS) and fosmid clones technologies, yielding ~343 Mb draft genome with 18,071 predicted protein-coding genes. Compared with other sequenced insect species, they found that the diamondback moth possesses a relatively larger set of genes and a moderate number of gene families, suggesting the expansion of certain gene families. Additionally, the genome-based phylogeny demonstrated that DBM was a basal lepidopteran species, which is well supported by its modal karyotype. Based on the genomic data generated from ~1,000 male pupae, researchers identified the genome-wide level of polymorphism within the sequenced DBM strain (Fuzhou-S), which may lay the genetic bases for DBM in adapting to various environmental challenges. They investigated a set of genes preferentially expressed at the larval stage that contribute to odorant chemoreception, food digestion and metabolic detoxification. Interestingly, they found that the co-expression of sulfatase modifying factor 1 (SUMF1) and glucosinolate sulfatase (GSS) genes may be crucial for DBM to become a successful cruciferous herbivore.

Insecticide tolerance or resistance may have contribution to the option of detoxification pathway in insect herbivores. In this study, researchers found DBM has a larger set of insecticide resistance-related genes than silkworm (B.mori) that had little exposure to insecticide over 5,000 years of domestication. They identified in DBM obvious gene duplications of four gene families that participated in xenobiotic detoxification in insects, including ATP-binding cassette (ABC) transporter families, the P450 monooxygenases (P450s), glutathione S-transferases (GSTs) and carboxylesterase (COEs). Notably, the further analysis highlighted the potential role of ABC transporters in detoxification.

The clever evolutionary trick has allowed DBM to become such a serious pest, and it may play an important role in the development of its ability to detoxify a wide range of chemicals. "Remarkably, it appears that the very genetic adaptations that allow DBM to detoxify the chemicals in its food plants, and also allow it to develop immunity to the insecticides used against it." commented by Professor Geoff Gurr of Charles Sturt University, Australia, one of the international collaborators.

Professor Jun Wang, Executive Director of BGI, said, "The availability of a reference genome for a species is extremely important in the deeper understanding of its biology and evolution. We are pleased to be part of this consortium and have the first publicly accessible database of diamondback moth genome. I expect we could translate our achievements into real actions for sustainable pest management in the near future."

The complete genome sequence of diamondback moth is publicly available via visit http://www.iae.fafu.edu.cn/DBM.


Story Source:

The above story is based on materials provided by BGI Shenzhen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Minsheng You, Zhen Yue, Weiyi He, Xinhua Yang, Guang Yang, Miao Xie, Dongliang Zhan, Simon W Baxter, Liette Vasseur, Geoff M Gurr, Carl J Douglas, Jianlin Bai, Ping Wang, Kai Cui, Shiguo Huang, Xianchun Li, Qing Zhou, Zhangyan Wu, Qilin Chen, Chunhui Liu, Bo Wang, Xiaojing Li, Xiufeng Xu, Changxin Lu, Min Hu, John W Davey, Sandy M Smith, Mingshun Chen, Xiaofeng Xia, Weiqi Tang, Fushi Ke, Dandan Zheng, Yulan Hu, Fengqin Song, Yanchun You, Xiaoli Ma, Lu Peng, Yunkai Zheng, Yong Liang, Yaqiong Chen, Liying Yu, Younan Zhang, Yuanyuan Liu, Guoqing Li, Lin Fang, Jingxiang Li, Xin Zhou, Yadan Luo, Caiyun Gou, Junyi Wang, Jian Wang, Huanming Yang, Jun Wang. A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 2013; DOI: 10.1038/ng.2524

Cite This Page:

BGI Shenzhen. "Genome of diamondback moth provides new clues for sustainable pest management." ScienceDaily. ScienceDaily, 13 January 2013. <www.sciencedaily.com/releases/2013/01/130113144921.htm>.
BGI Shenzhen. (2013, January 13). Genome of diamondback moth provides new clues for sustainable pest management. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/01/130113144921.htm
BGI Shenzhen. "Genome of diamondback moth provides new clues for sustainable pest management." ScienceDaily. www.sciencedaily.com/releases/2013/01/130113144921.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins