Featured Research

from universities, journals, and other organizations

Underwater CO₂ shows potential as barrier to Asian carp

Date:
January 23, 2013
Source:
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Summary:
As the Asian carp population grows and the threat of the invasive species entering Lake Michigan through one of the Chicago canals is monitored, a researcher believes using two barrier methods is better than one.

Although Asian carp are known to jump when water is agitated, Suski said the fish did not jump to escape the carbon dioxide.
Credit: Kevin Irons, Illinois DNR

As the Asian carp population grows and the threat of the invasive species entering Lake Michigan through one of the Chicago canals is monitored, a University of Illinois researcher believes using two barrier methods is better than one.

Cory Suski experimented with adding carbon dioxide (CO₂) into the water as a supplemental tool to work in tandem with the electric fence, which has been used to divert the carp from entering the canal, with the goal of providing a second line of defense. Suski found that carbon dioxide is quick and effective in repelling fish from an area.

"In one experiment using tanks, we could actually chase the fish with the gas," Suski said. "Once carbon dioxide reached a threshold, fish would 'choose' to leave the area of the tank that had CO₂. The fish initially showed signs of being irritated or agitated after exposure, and eventually they lost equilibrium. If fish cannot leave or are slow to leave the carbon dioxide accumulates to a point where it will act like an anesthetic gas used for patients who are undergoing surgery."

Suski knew that CO₂ had already been proven to be effective at fish hatcheries. The CO₂ was used to move fish from one area to another, making it easier to harvest them. He wanted to see if the technique could be applied to the Chicago River canals and at other vulnerable entry points into the Great Lakes.

In addition to studies quantifying behavior and stress physiology in response to CO₂, Suski used a laboratory tank called a shuttle box that contains two chambers and a connecting canal. The level of carbon dioxide can be controlled on either side of the box. Tests were performed on bighead carp and silver carp as well as bluegill and largemouth bass so the effects on native species of fish could be confirmed. CO₂ had the same effect on all four species.

"What we learned is that CO₂ does not appear to be species specific," Suski said. "This is good because there are other species besides Asian carp that we don't want swimming back and forth between the river and the Great Lakes. The electric fence is also a non-species-specific barrier, and all non-physical barriers have weaknesses. The CO₂ barrier isn't intended to replace the electric fence. It's another tool, a redundant barrier that further increases the likelihood of stopping fish from getting through," he said.

Because carp are known to jump, Suski was prepared for the possibility that the carp would try to jump out of the shuttle box to escape the carbon dioxide. "We covered the tanks to keep them contained, but they didn't jump," he said.

Suski also conducted an experiment on a larger scale in a small, outdoor pond about 40 feet by 30 feet but without fish. "We wanted to see how easy it would be to put CO₂ into a lot of water," Suski said. "As it turned out, it's shockingly easy. We did it with a hose and a gas source and just bubbled it in."

Suski said the next step will be to test it in the field on a larger scale, determining the costs and the effect it may have on non-target species and on the environment. The elevated CO₂ makes the water slightly more acidic so Suski wants to learn how the higher acidity affects fish, the water, and other organisms.

"What we're working on right now is seeing how effective CO₂ is on small fish," Suski said. "In theory, CO₂ could eliminate all fish from an area, regardless of their size, whereas we know that for small fish, 1 to 3 inches, the electrical barrier becomes less effective. If smaller fish don't like the CO₂ and choose to swim away, that's a potential shortcoming of the electrical barrier that CO₂ can address."

According to Suski, Asian carp grow rapidly and totally disrupt the food chain. All fish depend upon zooplankton (small animals) and phytoplankton (small plants) when they are very small. "Asian carp eat these items that the other fish and other aquatic organisms depend upon, thus pulling the rug out from the bottom of the food chain," Suski said.

Suski said Asian carp are already in the Mississippi River all the way up to Minnesota as well as in South Dakota.

"Once they get into the Great Lakes, there is concern that they could do well there and further spread to other canals throughout eastern North America," Suski said.

Responses of native and invasive fishes to carbon dioxide: Potential for a non-physical barrier to fish dispersal was published in the Canadian Journal of Fisheries and Aquatic Sciences. The research was funded by the Illinois Department of Natural Resources, United States Fish and Wildlife Service, Environmental Protection Agency, the Great Lakes Restoration Initiative, and the White House Council on Environmental Quality.


Story Source:

The above story is based on materials provided by University of Illinois College of Agricultural, Consumer and Environmental Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dan Kates, Clark Dennis, Matthew R. Noatch, Cory D. Suski, D.L. MacLatchy. Responses of native and invasive fishes to carbon dioxide: potential for a nonphysical barrier to fish dispersal. Canadian Journal of Fisheries and Aquatic Sciences, 2012; 69 (11): 1748 DOI: 10.1139/f2012-102

Cite This Page:

University of Illinois College of Agricultural, Consumer and Environmental Sciences. "Underwater CO₂ shows potential as barrier to Asian carp." ScienceDaily. ScienceDaily, 23 January 2013. <www.sciencedaily.com/releases/2013/01/130123115243.htm>.
University of Illinois College of Agricultural, Consumer and Environmental Sciences. (2013, January 23). Underwater CO₂ shows potential as barrier to Asian carp. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/01/130123115243.htm
University of Illinois College of Agricultural, Consumer and Environmental Sciences. "Underwater CO₂ shows potential as barrier to Asian carp." ScienceDaily. www.sciencedaily.com/releases/2013/01/130123115243.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins