Featured Research

from universities, journals, and other organizations

Controlled crumpling of graphene forms artificial muscle

Date:
January 23, 2013
Source:
Duke University
Summary:
Engineers are layering atom-thick lattices of carbon with polymers to create unique materials with a broad range of applications, including artificial muscles.

Crumpled graphene.
Credit: Image courtesy of Duke University

Duke University engineers are layering atom-thick lattices of carbon with polymers to create unique materials with a broad range of applications, including artificial muscles.

The lattice, known as graphene, is made of pure carbon and appears under magnification like chicken wire. Because of its unique optical, electrical and mechanical properties, graphene is used in electronics, energy storage, composite materials and biomedicine.

However, graphene is extremely difficult to handle in that it easily "crumples," which, depending on circumstances, can be a positive or negative characteristic. Unfortunately, scientists have been unable to control the crumpling and unfolding of large-area graphene to take advantage of its properties.

Duke engineer Xuanhe Zhao, assistant professor in Duke's Pratt School of Engineering, likens the challenge of controlling graphene to the difference between unfolding paper and wet tissue.

"If you crumpled up normal paper, you can pretty easily flatten it out," Zhao said. "However, graphene is more like wet tissue paper. It is extremely thin and sticky and difficult to unfold once crumpled. We have developed a method to solve this problem and control the crumpling and unfolding of large-area graphene films."

The Duke engineers attached the graphene on a rubber film that had been pre-stretched multiple times of its original size. Once the pre-stretch in the rubber film was relaxed, part of the graphene detached from the rubber while other part kept adhering on the rubber, forming an attached-detached pattern with a size of a few nanometers. As the rubber was relaxed, the detached graphene was compressed to crumple. Once the rubber film was stretched back, the adhered graphene will pull on the crumpled graphene to unfold it.

"In this way, the crumpling and unfolding of large-area atomic-thick graphene can be controlled by simply stretching and relaxing a rubber film, even by hand," Zhao said.

The results were published online in the journal Nature Materials.

"Our approach has opened avenues to exploit unprecedented properties and functions of graphene," said Jianfeng Zang, a postdoctoral fellow in Zhao's group and the first author of the paper. "For example, we can tune the graphene from being transparent to opaque by crumpling it, and tune it back by unfolding it."

In addition, the Duke engineers layered the graphene with different polymer films to make a "soft" material that can act like muscle tissues by contracting and expanding on demand. When electricity is applied to the graphene, the artificial muscle expands in area; when the electricity is cut off, it relaxes. Varying the voltage controls the degree of contraction and relaxation, giving actuation strains over 100 percent.

"Indeed, the crumpling and unfolding of graphene allows large deformation of the artificial muscle." Zang said.

"New artificial muscles are enabling diverse technologies ranging from robotics and drug delivery to energy harvesting and storage," Zhao said. "In particular, they promise to greatly improve the quality of life for millions of disabled people by providing affordable devices such as lightweight prostheses and full-page Braille displays. The broad impact of new artificial muscles is potentially analogous to the impact of piezoelectric materials on the global society."

Zhao's work is supported by the National Science Foundation's (NSF) Triangle Materials Research Science and Engineering Center, NSF Materials and Surface Engineering program, and National Institutes of Health (NIH). Other members of the team are Duke's Qiming Wang and Qing Tu.


Story Source:

The above story is based on materials provided by Duke University. The original article was written by Richard Merritt. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jianfeng Zang, Seunghwa Ryu, Nicola Pugno, Qiming Wang, Qing Tu, Markus J. Buehler, Xuanhe Zhao. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature Materials, 2013; DOI: 10.1038/nmat3542

Cite This Page:

Duke University. "Controlled crumpling of graphene forms artificial muscle." ScienceDaily. ScienceDaily, 23 January 2013. <www.sciencedaily.com/releases/2013/01/130123165042.htm>.
Duke University. (2013, January 23). Controlled crumpling of graphene forms artificial muscle. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2013/01/130123165042.htm
Duke University. "Controlled crumpling of graphene forms artificial muscle." ScienceDaily. www.sciencedaily.com/releases/2013/01/130123165042.htm (accessed September 1, 2014).

Share This




More Matter & Energy News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins