Featured Research

from universities, journals, and other organizations

Biofuels blend right in: Researchers show ionic liquids effective for pre-treating mixed blends of biofuel feedstocks

Date:
January 30, 2013
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Blending different feedstocks and milling the mixture into flour or pellets has significant potential for helping to make biofuels a cost-competitive transportation fuel technology.

JBEI and INL researchers densified the energy content of a blend of biofuel feedstocks by milling the mixture into flour or pellets. Densification makes transporting the feedstocks easier and less expensive.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

Winemakers have long known that blending different grape varietals can favorably balance the flavor characteristics of the wine they produce. In the future, makers of advanced biofuels might use a similar strategy, blending different feedstock varieties to balance the energy characteristics of the transportation fuel they produce.

A collaborative study by researchers with the U.S. Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI), a bioenergy research center led by Berkeley Lab, and the Idaho National Laboratory (INL) has shown that an ionic liquid proven to be effective for pre-treating individual biofuel feedstocks is also effective at pre-treating multiple different feedstocks that have been mixed and densified into a blend.

"Our results show that an ionic liquid pre-treatment can efficiently handle mixed feedstocks that have been milled and densified into pellets, and can generate high yields of fermentable sugars regardless of upstream processing," says Blake Simmons, a chemical engineer who heads JBEI's Deconstruction Division. "This indicates that blending and densifying a wide range of feedstocks has significant potential for helping to make biofuels a cost-competitive transportation fuel technology."

Simmons and his JBEI colleague Seema Singh, director of JBEI's Biomass Pretreatment group, led the JBEI/INL study in which four biomass feedstocks, representing the general classes of plants well-suited to serving as fuel crops, were mixed and milled into either flour or pellets then pre-treated with 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), the ionic liquid used at JBEI as a benchmark for biomass processing. The objective was to determine the impact of mixing and densification on the efficiency at which the complex polysaccharides in cellulosic biomass could be converted into fermentable sugars for fuel production.

"Lignocellulosic biorefineries must be able to efficiently process available regional feedstocks at cost-competitive prices year round, but feedstocks markedly vary from region-to-region," Singh says. "Also, individual feedstocks within a given region are also quite variable, depending on weather conditions, handling, storage and crop variety. Blending and densifying different feedstocks to create a single uniform feedstock has been proposed as a solution, but not much scientific attention has been paid to the efficiency of converting mixtures of feedstocks into fermentable sugars and fuels."

Given that global temperatures are now setting record highs and that the burning of fossil fuels is releasing an additional 9 billion metric tons of excess atmosphere-warming carbon each year, both the planet and the American economy stand to benefit from a large-scale domestic advanced biofuels industry. Produced from the microbial fermentation of sugars in lignocellulosic biomass, advanced biofuels are clean, green and renewable, and could displace gasoline, diesel and jet fuel on a gallon-for-gallon basis and be directly dropped into today's engines and infrastructures.

The sugars in lignocellulosic biomass, however, are complex polysaccharides that are deeply embedded within a very recalcitrant material called lignin. To break apart the complex lignocellulose and help hydrolyze the released polysaccharides into sugars that can be fermented by microbes, researchers at JBEI and elsewhere have been studying biomass pretreatments with ionic liquids -- environmentally benign organic salts often used as green chemistry substitutes for volatile organic solvents.

Researchers at INL have been investigating ways to increase the energy densities of biomass feedstocks and make delivery to refineries much more economical. Milling feedstocks into flour or pellets is an effective process for large-scale energy densification, but before this latest study it was unknown as to how densification of single or mixed feedstocks would impact ionic liquid pretreatment and sugar yield.

The JBEI/INL collaboration mixed switchgrass, lodgepole pine, corn stover and eucalyptus in flour and pellets and within 24 hours of saccharification were able to obtain sugar yields of up to 90-percent for both forms. Pellets, because of their higher energy density, would be the preferred form.

"Our work is the first demonstration that ionic liquid pretreatments can effectively handle mixed and densified feedstocks," Simmons says. "We're continuing the collaboration to next identify the most economical pelletized feedstock mixtures based on targeted regions of the United States. We'' then determine how efficiently our process can convert these mixtures into fermentable sugars."


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jian Shi, Vicki S Thompson, Neal A Yancey, Vitalie Stavila, Blake A Simmons, Seema Singh. Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels, 2013; 4 (1): 63 DOI: 10.4155/bfs.12.82

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Biofuels blend right in: Researchers show ionic liquids effective for pre-treating mixed blends of biofuel feedstocks." ScienceDaily. ScienceDaily, 30 January 2013. <www.sciencedaily.com/releases/2013/01/130130132449.htm>.
DOE/Lawrence Berkeley National Laboratory. (2013, January 30). Biofuels blend right in: Researchers show ionic liquids effective for pre-treating mixed blends of biofuel feedstocks. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/01/130130132449.htm
DOE/Lawrence Berkeley National Laboratory. "Biofuels blend right in: Researchers show ionic liquids effective for pre-treating mixed blends of biofuel feedstocks." ScienceDaily. www.sciencedaily.com/releases/2013/01/130130132449.htm (accessed July 25, 2014).

Share This




More Earth & Climate News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com
Storm Kills Three, Injures 20 at Virginia Campground

Storm Kills Three, Injures 20 at Virginia Campground

Reuters - US Online Video (July 24, 2014) A likely tornado tears through an eastern Virginia campground, killing three and injuring at least 20. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins