Featured Research

from universities, journals, and other organizations

Researchers decipher a key circuit in regulating genes involved in producing blood stem cells

Date:
January 31, 2013
Source:
IMIM (Hospital del Mar Medical Research Institute)
Summary:
Researchers have deciphered one of the gene regulation circuits which would make it possible to generate hematopoietic blood cells, i.e. blood tissue stem cells. This could benefit patients with leukemia or other diseases requiring a transplant who do not have compatible donors.

Researchers from the group on stem cells and cancer at IMIM (Hospital del Mar Medical Research Institute) have deciphered one of the gene regulation circuits which would make it possible to generate hematopoietic blood cells, i.e. blood tissue stem cells. This finding is essential to generate these cells in a laboratory in the future, a therapy that could benefit patients with leukemia or other diseases who need a transplant and who, in many cases, do not have a compatible donor.

In the process of generating stem cells, many molecule signals intervene which, through a regulating circuit are induced at a certain moment and remain active during a specific time until they switch off so these cells can differentiate. Anna Bigas, the coordinator of the research group on stem cells and cancer at IMIM explains: "We discovered that the Notch protein, which is involved in the development of most tissues, is responsible for activating the gene GATA2 which is necessary to generate hematopoietic stem cells; at the same time, it induces the reproduction of its own repressor, HES-1." The team lead by Bigas has also shown that this regulating circuit allows the limited production of GATA2, and this is essential for the production of hematopoietic stem cells.

The study was developed over 4 years and consisted in performing a large number of experiments with the collaboration of groups from Japan, Holland and the USA. On the one hand, researchers identified the mechanism regulating the gene GATA2 in hematopoietic stem cells of a mouse embryo and, on the other hand, they identified DNA sequences regulating this gene; i.e. the sequences of gene GATA2 where the Notch protein and the repressor HES-1 bind. After generating several mutations in these sequences, researchers saw that if the Notch protein does not bind to GATA 2, the gene is not activated, whereas if it's the repressor HES-1 that doesn't bind to it, then there is an over-production of the protein GATA 2. Researchers also proved that embryos where HES-1 has been eliminated may not generate functional hematopoietic stem cells due to excessive production of GATA 2.

One of the difficulties encountered by the researchers when carrying out this study is that, from a methodological approach, some of the required techniques were not possible to carry out at IMIM's laboratories, and for this reason collaboration was established with the group lead by Prof. Masayuki Yamamoto at the Tohoku University School of Medicine in Sendai, Japan. The first signatory of the paper, Dr. Jordi Grau, travelled to Sendai for four months but, due to the earthquake in 2011, it was impossible to conclude the task. It was thanks to the collaborations established with the group lead by Prof. Elaine Dzierzak at the Erasmus University in Rotterdam that it was finally possible to continue with the project.

The process of generating stem cells specifically from tissue in a laboratory is being studied in many laboratories around the world, but this has not yet been achieved. This shows that we need further research into the mechanisms used be the embryo to generate these cells and which regulating genes are involved in this process. "We discovered a basic circuit but there are still many more to discover. Our end objective is to validate our results with cells coming from mouse embryonic stem cells and then being able to use this knowledge to generate human hematopoietic stem cells in a laboratory for therapeutic purposes. These cells could then be used for patients needing a hematologic transplant and do not have a compatible donor," concludes Dr. Bigas.


Story Source:

The above story is based on materials provided by IMIM (Hospital del Mar Medical Research Institute). Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Guiu, R. Shimizu, T. D'Altri, S. T. Fraser, J. Hatakeyama, E. H. Bresnick, R. Kageyama, E. Dzierzak, M. Yamamoto, L. Espinosa, A. Bigas. Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling. Journal of Experimental Medicine, 2012; 210 (1): 71 DOI: 10.1084/jem.20120993

Cite This Page:

IMIM (Hospital del Mar Medical Research Institute). "Researchers decipher a key circuit in regulating genes involved in producing blood stem cells." ScienceDaily. ScienceDaily, 31 January 2013. <www.sciencedaily.com/releases/2013/01/130131120908.htm>.
IMIM (Hospital del Mar Medical Research Institute). (2013, January 31). Researchers decipher a key circuit in regulating genes involved in producing blood stem cells. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/01/130131120908.htm
IMIM (Hospital del Mar Medical Research Institute). "Researchers decipher a key circuit in regulating genes involved in producing blood stem cells." ScienceDaily. www.sciencedaily.com/releases/2013/01/130131120908.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins