Featured Research

from universities, journals, and other organizations

Nano-channel disentangles knotted DNA

Date:
February 20, 2013
Source:
Sissa Medialab
Summary:
DNA, just like hair, has a tendency to become knotted, thus it may be useful to disentangle it. Unfortunately, it is not possible to “actively” choose at random (or better, in one solution) the filaments with the desired features, and this is why scientists adopt “passive” solutions like, for instance, having the DNA pass through nano-pores or nano-channels.

Knotted DNA.
Credit: Image courtesy of Sissa Medialab

DNA, just like hair, has a tendency to become knotted, thus it may be useful to disentangle it. Unfortunately, it is not possible to "actively" choose at random (or better, in one solution) the filaments with the desired features, and this is why scientists adopt "passive" solutions like, for instance, having the DNA pass through nano-pores or nano-channels.

"Channels and filaments have physical features we may exploit to selectively let a type of molecule pass through" explains Micheletti. "You can have more or less entangled filaments and featuring knots of different types. In our study we have considered a specific DNA filament model and examined its behavior within a nano-channel. We have observed that by varying the channel's width it is possible to drastically change the quantity and complexity of the knots formed by the DNA."

The nano-channels may therefore be a tool with a double function: on one side they are used to understand the "knotting pattern" of a DNA fragment, on the other they may be used to select entangled filaments in the desired manner. The sectors employing DNA, mainly in sequencing, require an increasing number of new techniques to select the DNA filaments according to their characteristics, such as length, shape as well as entanglement.

"Experimental physicists will be, in the first instance, interested is such technique to obtain knot-free DNA," explains Micheletti referring to the usefulness of the methodology (that for now has been studied through simulation). "We should not forget that such method may also help us better understand, for instance, the functioning of topoisomerases, enzymes that have a very important role in cell metabolism." Such enzymes play a key role in an organism: they maintain the DNA stretched out when the cell is not undergoing the cell division process.

"We are used to envisage chromosomes in their typical rod shaped appearance, the one preceding mitosis, that is to say cell reproduction," adds Micheletti. "However, usually the DNA is a sort of indistinct bundle that fills up the cell's nucleus. The topoisomerases maintain the disentangled filaments with the lowest possible rate of knotting, and do so by snipping and reattaching the little pieces of genetic material." Only on the "disentangled" filament all those transcription processes which are fundamental to the survival of an organism can actually function. "The functioning of such enzymes may be better grasped if, before having them perform, we already know to what extent the molecule was entangled in the first place, and our methodology may be useful to this purpose." concludes Micheletti.


Story Source:

The above story is based on materials provided by Sissa Medialab. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cristian Micheletti, Enzo Orlandini. Knotting and metric scaling properties of DNA confined in nano-channels: a Monte Carlo study. Soft Matter, 2012; 8 (42): 10959 DOI: 10.1039/C2SM26401C

Cite This Page:

Sissa Medialab. "Nano-channel disentangles knotted DNA." ScienceDaily. ScienceDaily, 20 February 2013. <www.sciencedaily.com/releases/2013/02/130220084707.htm>.
Sissa Medialab. (2013, February 20). Nano-channel disentangles knotted DNA. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2013/02/130220084707.htm
Sissa Medialab. "Nano-channel disentangles knotted DNA." ScienceDaily. www.sciencedaily.com/releases/2013/02/130220084707.htm (accessed September 16, 2014).

Share This



More Plants & Animals News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins