Featured Research

from universities, journals, and other organizations

Fungal cleaning crew: Chemists determine the structure of an enzyme that breaks down dyes

Date:
February 26, 2013
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Fungi serve as a kind of natural cleaning crew for the ecosystem. They form enzymes that can degrade hazardous substances, converting natural as well as human-made toxins into harmless compounds. For instance, they can help to break down synthetic dyes, which accumulate in great amounts during the production of textiles.

Fungi serve as a kind of natural cleaning crew for the ecosystem. They form enzymes that can degrade hazardous substances, converting natural as well as human-made toxins into harmless compounds. For instance, they can help to break down synthetic dyes, which accumulate in great amounts during the production of textiles. Prof. Dr. Dietmar A. Plattner, Dr. Klaus Piontek, and Eric Strittmatter from the Institute of Organic Chemistry of the University of Freiburg and their colleagues from research groups at the International Graduate School of Zittau of the University of Dresden have determined the three-dimensional atomic structure of an enzyme of this kind, a dye-decolorizing peroxidase (DyP).

Their findings have now been published in the Journal of Biological Chemistry (JBC).

In nature, all organisms make use of enzymes in order to build up and break down vital substances. These biocatalysts are often superior to traditional chemical processes as they enable chemical reactions under especially mild conditions. Several fungal enzymes are commonly used in industry as a replacement for other chemicals. In clothing production, for example, they are the reagents responsible for giving blue jeans a so-called stonewashed or used look.

Plattner's research team is studying several fungal enzymes and attempting to analyze their structure. The scientists hope that this will lead to a better understanding of how the enzymes function. Up until the end of 2010, the scientists were consortium members of the European Union project BIORENEW that was funded with a total of 15 million. They are now participating in the project BioIndustrie2021, which is receiving 1.1 euros in funding from the Federal Ministry of Education and Research. The Freiburg researchers are currently focusing their efforts on enzymes of the class heme peroxidase.. In the future, they hope to use their findings to design custom-made enzymes for industrial applications, making many chemical processes more environmentally friendly.

The dye-decolorizing peroxidase (DyP) belongs to the class of heme peroxidases and is isolated from jelly ear (Auricularia auricula-judae), an edible fungus indigenous to Germany. Piontek and Strittmatter used x-ray crystallographic methods to elucidate the atomic structure of the enzyme. With the help of this model, they determined how the substrate molecules need to bind to the enzyme in order to be converted to other substances in a chemical reaction. While studying this mechanism, they discovered an apparent contradiction: The binding pocket is only large enough for some of the substrate molecules -- for the smaller chemical compounds that are converted by the enzyme. However, it is too small for larger and bulky substrates such as synthetic dyes. Hence, there must be another binding site on the surface of the enzyme that larger molecules can dock onto.

The members of Plattner's team succeeded in locating this site. In addition, they identified the amino acid that enables the enzyme to interact with the substrate and transfers an electron from the substrate molecule to the center of the enzyme.

This is the second example of a so-called redox-active surface amino acid to be found in fungal enzymes to date.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Strittmatter, C. Liers, R. Ullrich, S. Wachter, M. Hofrichter, D. A. Plattner, K. Piontek. First Crystal Structure of a Fungal High-redox Potential Dye-decolorizing Peroxidase: SUBSTRATE INTERACTION SITES AND LONG-RANGE ELECTRON TRANSFER. Journal of Biological Chemistry, 2012; 288 (6): 4095 DOI: 10.1074/jbc.M112.400176

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Fungal cleaning crew: Chemists determine the structure of an enzyme that breaks down dyes." ScienceDaily. ScienceDaily, 26 February 2013. <www.sciencedaily.com/releases/2013/02/130226092008.htm>.
Albert-Ludwigs-Universität Freiburg. (2013, February 26). Fungal cleaning crew: Chemists determine the structure of an enzyme that breaks down dyes. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2013/02/130226092008.htm
Albert-Ludwigs-Universität Freiburg. "Fungal cleaning crew: Chemists determine the structure of an enzyme that breaks down dyes." ScienceDaily. www.sciencedaily.com/releases/2013/02/130226092008.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins