Featured Research

from universities, journals, and other organizations

Hidden layer of genome unveils how plants may adapt to environments throughout the world

Date:
March 6, 2013
Source:
Salk Institute
Summary:
Scientists have identified patterns of epigenomic diversity that not only allow plants to adapt to various environments, but could also benefit crop production and the study of human diseases.

This graphic depicts a collection of wild Arabidopsis thaliana from around the world that have adapted to their local environment. This collection of plants was used to understand the patterns of population epigenomic diversity within a species.
Credit: Photographs were contributed by Patrick Gooden, Kathleen Donohue and @2011 Google. Graphic was designed by Jamie Simon

Scientists at the Salk Institute for Biological Studies have identified patterns of epigenomic diversity that not only allow plants to adapt to various environments, but could also benefit crop production and the study of human diseases.

Related Articles


Published March 6 in Nature, the findings show that in addition to genetic diversity found in plants throughout the world, their epigenomic makeup is as varied as the environments in which they are found. Epigenomics is the study of the pattern of chemical markers that serve as a regulatory layer on top of the DNA sequence. Depending on where they grow, the plants' epigenomic differences may allow them to rapidly adapt to their environments.

Epigenomic modifications alter gene expression without changing the letters of the DNA alphabet (A-T-C-G), providing cells with an additional tool to fine-tune how genes control the cellular machinery. These changes occur not only in plants, but in humans as well.

"We looked at plants collected from around the world and found that their epigenomes are surprisingly different," says senior author Joseph R. Ecker, a professor in Salk's Plant Biology Laboratory and holder of the Salk International Council Chair in Genetics. "This additional diversity may create a way for plants to rapidly adapt to diverse environments without any genetic change in their DNA, which takes a very long time."

By understanding epigenomic alterations in plants, scientists may be able to manipulate them for various purposes, including biofuels and creating crops that can withstand stressful events such as drought. That knowledge of epigenomic changes in crop plants could tell producers what to breed for and could have a huge impact on identifying plants that can survive certain conditions and adapt to environmental stressors, says Ecker, who is also a Howard Hughes Medical Institute and Gordon and Betty Moore Foundation Investigator.

Using MethylC-Seq, a method for mapping epigenomic changes developed by Ecker, the researchers analyzed methylation patterns from a population of Arabidopsis thaliana, a modest mustard weed that has become to plant biology what laboratory mice are to animal biology. The plants were from a variety of climates in the Northern Hemisphere, from Europe to Asia and Sweden to the Cape Verde Islands. Ecker's team examined the genomes and methylomes of A. thaliana, the makeup of their entire genetic and epigenomic codes, respectively, which is the first step toward understanding the impact of epigenetic changes on the plants' physical characteristics and ability to adapt to their environment.

"We expected variation in methylation patterns among groups of plants from around the globe," says co-lead author Robert J. Schmitz, a postdoctoral researcher in Ecker's lab. "The amount, however, was far greater than we ever anticipated."

By analyzing these patterns, Ecker's team was able to chart their effects on the activity of genes in the plants' genome. Scientists know that methylation can inactivate genes, but in contrast to DNA mutations, methylation patterns are reversible, giving the plants the ability to temporarily activate genes. The identification of genes that are epigenetically regulated has greatly narrowed the potential candidates important for environmental adaptation.

Methylation silencing also occurs in humans -- and that has implications for treating cancer, a hallmark of which is the silencing of tumor suppressor genes. "If these genes are turned off by the epigenome, they could potentially be turned back on by removing the DNA methylation," says study co-lead author Matthew Schultz, a graduate student in Ecker's lab. Understanding how these methylation variants form in the wild will help toward better engineering of epigenomes.

Ecker's team will next study how methylation variations affect the traits of plants. They will examine stress-induced epigenomic changes and how they might provide clues as to which alterations are most important for the plants.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robert J. Schmitz, Matthew D. Schultz, Mark A. Urich, Joseph R. Nery, Mattia Pelizzola, Ondrej Libiger, Andrew Alix, Richard B. McCosh, Huaming Chen, Nicholas J. Schork, Joseph R. Ecker. Patterns of population epigenomic diversity. Nature, 2013; DOI: 10.1038/nature11968

Cite This Page:

Salk Institute. "Hidden layer of genome unveils how plants may adapt to environments throughout the world." ScienceDaily. ScienceDaily, 6 March 2013. <www.sciencedaily.com/releases/2013/03/130306134356.htm>.
Salk Institute. (2013, March 6). Hidden layer of genome unveils how plants may adapt to environments throughout the world. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/03/130306134356.htm
Salk Institute. "Hidden layer of genome unveils how plants may adapt to environments throughout the world." ScienceDaily. www.sciencedaily.com/releases/2013/03/130306134356.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins